Algorithmic Self-Tracking for Health: User Perspectives on Risk Awareness and Coping Strategies
Self-tracking with wearable devices and mobile applications is a popular practice that relies on automated data collection and algorithm-driven analytics. Initially designed as a tool for personal use, a variety of public and corporate actors such as commercial organizations and insurance companies...
Guardado en:
Autores principales: | Noemi Festic, Michael Latzer, Svetlana Smirnova |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Cogitatio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4399468241b544aca16c825f6b54d570 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The New Face of Internet User Typology: The Case of Thailand
por: Krairit,Donyaprueth
Publicado: (2018) -
Effectivness of specific mobile health applications (mHealth-apps) in gestational diabtetes mellitus: a systematic review
por: Claudia Eberle, et al.
Publicado: (2021) -
Profile of the Users and the Most Visited Topics of a Pediatric eHealth Website
por: Bruno José Nievas-Soriano, et al.
Publicado: (2021) -
STRATEGIES OF COPING WITH DIFFICULTIES DURING RESEARCH PERFORMED BY YOUNG SCIENTISTS
por: Tatiana G. Bokhan, et al.
Publicado: (2017) -
Psychological resources and strategies to cope with stress at work
por: Edna Rabenu, et al.
Publicado: (2017)