Automatic Asbestos Control Using Deep Learning Based Computer Vision System
The paper discusses the results of the research and development of an innovative deep learning-based computer vision system for the fully automatic asbestos content (productivity) estimation in rock chunk (stone) veins in an open pit and within the time comparable with the work of specialists (about...
Enregistré dans:
Auteurs principaux: | Vasily Zyuzin, Mikhail Ronkin, Sergey Porshnev, Alexey Kalmykov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/43a306127d5a434ea9de8243c36fd8d2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Attention Mask R-CNN for Ship Detection and Segmentation From Remote Sensing Images
par: Xuan Nie, et autres
Publié: (2020) -
Cascaded Segmented Matting Network for Human Matting
par: Bo Liu, et autres
Publié: (2021) -
Pixel-Level Analysis for Enhancing Threat Detection in Large-Scale X-ray Security Images
par: Joanna Kazzandra Dumagpi, et autres
Publié: (2021) -
Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps
par: Ingmar Nitze, et autres
Publié: (2021) -
The Global Spread of Asbestos
par: Arthur L. Frank, et autres
Publié: (2014)