Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host
Abstract Reptiles have been shown to host a significant Helicobacter diversity. In order to survive, reptile-associated Helicobacter lineages need to be adapted to the thermally dynamic environment encountered in a poikilothermic host. The whole genomes of reptile-associated Helicobacter lineages ca...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43c46e79273c408a9d003d015dd1ea54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:43c46e79273c408a9d003d015dd1ea54 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:43c46e79273c408a9d003d015dd1ea542021-12-02T15:05:56ZWhole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host10.1038/s41598-017-09091-72045-2322https://doaj.org/article/43c46e79273c408a9d003d015dd1ea542017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-09091-7https://doaj.org/toc/2045-2322Abstract Reptiles have been shown to host a significant Helicobacter diversity. In order to survive, reptile-associated Helicobacter lineages need to be adapted to the thermally dynamic environment encountered in a poikilothermic host. The whole genomes of reptile-associated Helicobacter lineages can provide insights in Helicobacter host adaptation and coevolution. These aspects were explored by comparing the genomes of reptile-, bird-, and mammal-associated Helicobacter lineages. Based on average nucleotide identity, all reptile-associated Helicobacter lineages in this study could be considered distinct species. A whole genome-based phylogeny showed two distinct clades, one associated with chelonians and one associated with lizards. The phylogeny indicates initial adaptation to an anatomical niche, which is followed by an ancient host jump and subsequent diversification. Furthermore, the ability to grow at low temperatures, which might reflect thermal adaptation to a reptilian host, originated at least twice in Helicobacter evolution. A putative tricarballylate catabolism locus was specifically present in Campylobacter and Helicobacter isolates from reptiles. The phylogeny of reptile-associated Helicobacter parallels host association, indicating a high level of host specificity. The high diversity and deep branching within these clades supports long-term coevolution with, and extensive radiation within the respective reptilian host type.Maarten J. GilbertBirgitta DuimArjen J. TimmermanAldert L. ZomerJaap A. WagenaarNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Maarten J. Gilbert Birgitta Duim Arjen J. Timmerman Aldert L. Zomer Jaap A. Wagenaar Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host |
description |
Abstract Reptiles have been shown to host a significant Helicobacter diversity. In order to survive, reptile-associated Helicobacter lineages need to be adapted to the thermally dynamic environment encountered in a poikilothermic host. The whole genomes of reptile-associated Helicobacter lineages can provide insights in Helicobacter host adaptation and coevolution. These aspects were explored by comparing the genomes of reptile-, bird-, and mammal-associated Helicobacter lineages. Based on average nucleotide identity, all reptile-associated Helicobacter lineages in this study could be considered distinct species. A whole genome-based phylogeny showed two distinct clades, one associated with chelonians and one associated with lizards. The phylogeny indicates initial adaptation to an anatomical niche, which is followed by an ancient host jump and subsequent diversification. Furthermore, the ability to grow at low temperatures, which might reflect thermal adaptation to a reptilian host, originated at least twice in Helicobacter evolution. A putative tricarballylate catabolism locus was specifically present in Campylobacter and Helicobacter isolates from reptiles. The phylogeny of reptile-associated Helicobacter parallels host association, indicating a high level of host specificity. The high diversity and deep branching within these clades supports long-term coevolution with, and extensive radiation within the respective reptilian host type. |
format |
article |
author |
Maarten J. Gilbert Birgitta Duim Arjen J. Timmerman Aldert L. Zomer Jaap A. Wagenaar |
author_facet |
Maarten J. Gilbert Birgitta Duim Arjen J. Timmerman Aldert L. Zomer Jaap A. Wagenaar |
author_sort |
Maarten J. Gilbert |
title |
Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host |
title_short |
Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host |
title_full |
Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host |
title_fullStr |
Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host |
title_full_unstemmed |
Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host |
title_sort |
whole genome-based phylogeny of reptile-associated helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/43c46e79273c408a9d003d015dd1ea54 |
work_keys_str_mv |
AT maartenjgilbert wholegenomebasedphylogenyofreptileassociatedhelicobacterindicatesindependentnicheadaptationfollowedbydiversificationinapoikilothermichost AT birgittaduim wholegenomebasedphylogenyofreptileassociatedhelicobacterindicatesindependentnicheadaptationfollowedbydiversificationinapoikilothermichost AT arjenjtimmerman wholegenomebasedphylogenyofreptileassociatedhelicobacterindicatesindependentnicheadaptationfollowedbydiversificationinapoikilothermichost AT aldertlzomer wholegenomebasedphylogenyofreptileassociatedhelicobacterindicatesindependentnicheadaptationfollowedbydiversificationinapoikilothermichost AT jaapawagenaar wholegenomebasedphylogenyofreptileassociatedhelicobacterindicatesindependentnicheadaptationfollowedbydiversificationinapoikilothermichost |
_version_ |
1718388640587972608 |