Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
Mycobacterium tuberculosis exhibits complex evolution of antimicrobial resistance (AMR). Here, the authors perform machine learning and structural analysis to identify signatures of AMR evolution to 13 antibiotics.
Guardado en:
Autores principales: | Erol S. Kavvas, Edward Catoiu, Nathan Mih, James T. Yurkovich, Yara Seif, Nicholas Dillon, David Heckmann, Amitesh Anand, Laurence Yang, Victor Nizet, Jonathan M. Monk, Bernhard O. Palsson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43c5a44a956f4bc3a0b1035a0afc669c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits
por: Yara Seif, et al.
Publicado: (2018) -
Systems Biology and Pangenome of <italic toggle="yes">Salmonella</italic> O-Antigens
por: Yara Seif, et al.
Publicado: (2019) -
A biochemically-interpretable machine learning classifier for microbial GWAS
por: Erol S. Kavvas, et al.
Publicado: (2020) -
Environmental conditions dictate differential evolution of vancomycin resistance in Staphylococcus aureus
por: Henrique Machado, et al.
Publicado: (2021) -
Pangenome Analytics Reveal Two-Component Systems as Conserved Targets in ESKAPEE Pathogens
por: Akanksha Rajput, et al.
Publicado: (2021)