Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia
Laurent Salade,1 Nathalie Wauthoz,1 Magali Deleu,2 Marjorie Vermeersch,3 Carine De Vriese,1 Karim Amighi,1 Jonathan Goole1 1Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, 2Laboratoire de Biophysique Moléculaire...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43df0d7b81cf490ea7e7369108916880 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:43df0d7b81cf490ea7e7369108916880 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:43df0d7b81cf490ea7e73691089168802021-12-02T03:03:56ZDevelopment of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia1178-2013https://doaj.org/article/43df0d7b81cf490ea7e73691089168802017-11-01T00:00:00Zhttps://www.dovepress.com/development-of-coated-liposomes-loaded-with-ghrelin-for-nose-to-brain--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Laurent Salade,1 Nathalie Wauthoz,1 Magali Deleu,2 Marjorie Vermeersch,3 Carine De Vriese,1 Karim Amighi,1 Jonathan Goole1 1Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, 2Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, 3Centre for Microscopy and Molecular Imaging (CMMI), Charleroi, Belgium Abstract: The aim of the present study was to develop a ghrelin-containing formulation based on liposomes coated with chitosan intended for nose–brain delivery for the treatment of cachexia. Among the three types of liposomes developed, anionic liposomes provided the best results in terms of encapsulation efficiency (56%) and enzymatic protection against trypsin (20.6% vs 0% for ghrelin alone) and carboxylesterase (81.6% vs 17.2% for ghrelin alone). Ghrelin presented both electrostatic and hydrophobic interactions with the anionic lipid bilayer, as demonstrated by isothermal titration calorimetry. Then, anionic liposomes were coated with N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride. The coating involved a size increment from 146.9±2.7 to 194±6.1 nm, for uncoated and coated liposomes, respectively. The ζ-potential was similarly increased from -0.3±1.2 mV to 6±0.4 mV before and after coating, respectively. Chitosan provided mucoadhesion, with an increase in mucin adsorption of 22.9%. Enhancement of permeation through the Calu3 epithelial monolayer was also observed with 10.8% of ghrelin recovered in the basal compartment in comparison to 0% for ghrelin alone. Finally, aerosols generated from two nasal devices (VP3 and SP270) intended for aqueous dispersion were characterized with either coated or uncoated liposomes. Contrarily to the SP270 device, VP3 device showed minor changes between coated and uncoated liposome aerosols, as shown by their median volume diameters of 38.4±5.76 and 37.6±5.74 µm, respectively. Overall, the results obtained in this study show that the developed formulation delivered by the VP3 device can be considered as a potential candidate for nose–brain delivery of ghrelin. Keywords: nasal delivery, peptide, liposome, cachexia, brain targeting, enzymeSalade LWauthoz NDeleu MVermeersch MDe Vriese CAmighi KGoole JDove Medical Pressarticlenasal deliverypeptideliposomecachexiabrain targetingenzymeMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 8531-8543 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
nasal delivery peptide liposome cachexia brain targeting enzyme Medicine (General) R5-920 |
spellingShingle |
nasal delivery peptide liposome cachexia brain targeting enzyme Medicine (General) R5-920 Salade L Wauthoz N Deleu M Vermeersch M De Vriese C Amighi K Goole J Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia |
description |
Laurent Salade,1 Nathalie Wauthoz,1 Magali Deleu,2 Marjorie Vermeersch,3 Carine De Vriese,1 Karim Amighi,1 Jonathan Goole1 1Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, 2Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, 3Centre for Microscopy and Molecular Imaging (CMMI), Charleroi, Belgium Abstract: The aim of the present study was to develop a ghrelin-containing formulation based on liposomes coated with chitosan intended for nose–brain delivery for the treatment of cachexia. Among the three types of liposomes developed, anionic liposomes provided the best results in terms of encapsulation efficiency (56%) and enzymatic protection against trypsin (20.6% vs 0% for ghrelin alone) and carboxylesterase (81.6% vs 17.2% for ghrelin alone). Ghrelin presented both electrostatic and hydrophobic interactions with the anionic lipid bilayer, as demonstrated by isothermal titration calorimetry. Then, anionic liposomes were coated with N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride. The coating involved a size increment from 146.9±2.7 to 194±6.1 nm, for uncoated and coated liposomes, respectively. The ζ-potential was similarly increased from -0.3±1.2 mV to 6±0.4 mV before and after coating, respectively. Chitosan provided mucoadhesion, with an increase in mucin adsorption of 22.9%. Enhancement of permeation through the Calu3 epithelial monolayer was also observed with 10.8% of ghrelin recovered in the basal compartment in comparison to 0% for ghrelin alone. Finally, aerosols generated from two nasal devices (VP3 and SP270) intended for aqueous dispersion were characterized with either coated or uncoated liposomes. Contrarily to the SP270 device, VP3 device showed minor changes between coated and uncoated liposome aerosols, as shown by their median volume diameters of 38.4±5.76 and 37.6±5.74 µm, respectively. Overall, the results obtained in this study show that the developed formulation delivered by the VP3 device can be considered as a potential candidate for nose–brain delivery of ghrelin. Keywords: nasal delivery, peptide, liposome, cachexia, brain targeting, enzyme |
format |
article |
author |
Salade L Wauthoz N Deleu M Vermeersch M De Vriese C Amighi K Goole J |
author_facet |
Salade L Wauthoz N Deleu M Vermeersch M De Vriese C Amighi K Goole J |
author_sort |
Salade L |
title |
Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia |
title_short |
Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia |
title_full |
Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia |
title_fullStr |
Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia |
title_full_unstemmed |
Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia |
title_sort |
development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia |
publisher |
Dove Medical Press |
publishDate |
2017 |
url |
https://doaj.org/article/43df0d7b81cf490ea7e7369108916880 |
work_keys_str_mv |
AT saladel developmentofcoatedliposomesloadedwithghrelinfornosetobraindeliveryforthetreatmentofcachexia AT wauthozn developmentofcoatedliposomesloadedwithghrelinfornosetobraindeliveryforthetreatmentofcachexia AT deleum developmentofcoatedliposomesloadedwithghrelinfornosetobraindeliveryforthetreatmentofcachexia AT vermeerschm developmentofcoatedliposomesloadedwithghrelinfornosetobraindeliveryforthetreatmentofcachexia AT devriesec developmentofcoatedliposomesloadedwithghrelinfornosetobraindeliveryforthetreatmentofcachexia AT amighik developmentofcoatedliposomesloadedwithghrelinfornosetobraindeliveryforthetreatmentofcachexia AT goolej developmentofcoatedliposomesloadedwithghrelinfornosetobraindeliveryforthetreatmentofcachexia |
_version_ |
1718401980774219776 |