Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
Abstract Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the re...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43e82bac18184adb98152506e92765a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:43e82bac18184adb98152506e92765a3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:43e82bac18184adb98152506e92765a32021-12-02T17:52:37ZCarrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity10.1038/s41699-021-00241-02397-7132https://doaj.org/article/43e82bac18184adb98152506e92765a32021-06-01T00:00:00Zhttps://doi.org/10.1038/s41699-021-00241-0https://doaj.org/toc/2397-7132Abstract Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the realization of intriguing optoelectronic applications. Herein, we demonstrate InSe photonic devices with different trends of output currents rooted in the carrier capture/release events under various gate voltages. Furthermore, we reported an increasing/flattening/decreasing synaptic weight change index (∆W n ) via a modulated gate electric field, which we use to imitate medicine-acting metaplasticity with effective/stable/ineffective features analogous to the synaptic weight change in the nervous system of the human brain. Finally, we take advantage of the low-frequency noise (LFN) measurements and the energy-band explanation to verify the rationality of carrier capture-assisted optoelectronics applied to neural simulation at the device level. Utilizing optoelectronics to simulate essential biomedical neurobehaviors, we experimentally demonstrate the feasibility and meaningfulness of combining electronic engineering with biomedical neurology.Qianfan NieCaifang GaoFeng-Shou YangKo-Chun LeeChe-Yi LinXiang WangChing-Hwa HoChen-Hsin LienShu-Ping LinMengjiao LiYen-Fu LinWenwu LiZhigao HuJunhao ChuNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 5, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Chemistry QD1-999 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Chemistry QD1-999 Qianfan Nie Caifang Gao Feng-Shou Yang Ko-Chun Lee Che-Yi Lin Xiang Wang Ching-Hwa Ho Chen-Hsin Lien Shu-Ping Lin Mengjiao Li Yen-Fu Lin Wenwu Li Zhigao Hu Junhao Chu Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity |
description |
Abstract Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the realization of intriguing optoelectronic applications. Herein, we demonstrate InSe photonic devices with different trends of output currents rooted in the carrier capture/release events under various gate voltages. Furthermore, we reported an increasing/flattening/decreasing synaptic weight change index (∆W n ) via a modulated gate electric field, which we use to imitate medicine-acting metaplasticity with effective/stable/ineffective features analogous to the synaptic weight change in the nervous system of the human brain. Finally, we take advantage of the low-frequency noise (LFN) measurements and the energy-band explanation to verify the rationality of carrier capture-assisted optoelectronics applied to neural simulation at the device level. Utilizing optoelectronics to simulate essential biomedical neurobehaviors, we experimentally demonstrate the feasibility and meaningfulness of combining electronic engineering with biomedical neurology. |
format |
article |
author |
Qianfan Nie Caifang Gao Feng-Shou Yang Ko-Chun Lee Che-Yi Lin Xiang Wang Ching-Hwa Ho Chen-Hsin Lien Shu-Ping Lin Mengjiao Li Yen-Fu Lin Wenwu Li Zhigao Hu Junhao Chu |
author_facet |
Qianfan Nie Caifang Gao Feng-Shou Yang Ko-Chun Lee Che-Yi Lin Xiang Wang Ching-Hwa Ho Chen-Hsin Lien Shu-Ping Lin Mengjiao Li Yen-Fu Lin Wenwu Li Zhigao Hu Junhao Chu |
author_sort |
Qianfan Nie |
title |
Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity |
title_short |
Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity |
title_full |
Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity |
title_fullStr |
Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity |
title_full_unstemmed |
Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity |
title_sort |
carrier-capture-assisted optoelectronics based on van der waals materials to imitate medicine-acting metaplasticity |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/43e82bac18184adb98152506e92765a3 |
work_keys_str_mv |
AT qianfannie carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT caifanggao carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT fengshouyang carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT kochunlee carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT cheyilin carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT xiangwang carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT chinghwaho carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT chenhsinlien carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT shupinglin carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT mengjiaoli carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT yenfulin carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT wenwuli carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT zhigaohu carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity AT junhaochu carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity |
_version_ |
1718379162544111616 |