Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity

Abstract Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qianfan Nie, Caifang Gao, Feng-Shou Yang, Ko-Chun Lee, Che-Yi Lin, Xiang Wang, Ching-Hwa Ho, Chen-Hsin Lien, Shu-Ping Lin, Mengjiao Li, Yen-Fu Lin, Wenwu Li, Zhigao Hu, Junhao Chu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/43e82bac18184adb98152506e92765a3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:43e82bac18184adb98152506e92765a3
record_format dspace
spelling oai:doaj.org-article:43e82bac18184adb98152506e92765a32021-12-02T17:52:37ZCarrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity10.1038/s41699-021-00241-02397-7132https://doaj.org/article/43e82bac18184adb98152506e92765a32021-06-01T00:00:00Zhttps://doi.org/10.1038/s41699-021-00241-0https://doaj.org/toc/2397-7132Abstract Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the realization of intriguing optoelectronic applications. Herein, we demonstrate InSe photonic devices with different trends of output currents rooted in the carrier capture/release events under various gate voltages. Furthermore, we reported an increasing/flattening/decreasing synaptic weight change index (∆W n ) via a modulated gate electric field, which we use to imitate medicine-acting metaplasticity with effective/stable/ineffective features analogous to the synaptic weight change in the nervous system of the human brain. Finally, we take advantage of the low-frequency noise (LFN) measurements and the energy-band explanation to verify the rationality of carrier capture-assisted optoelectronics applied to neural simulation at the device level. Utilizing optoelectronics to simulate essential biomedical neurobehaviors, we experimentally demonstrate the feasibility and meaningfulness of combining electronic engineering with biomedical neurology.Qianfan NieCaifang GaoFeng-Shou YangKo-Chun LeeChe-Yi LinXiang WangChing-Hwa HoChen-Hsin LienShu-Ping LinMengjiao LiYen-Fu LinWenwu LiZhigao HuJunhao ChuNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 5, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
Qianfan Nie
Caifang Gao
Feng-Shou Yang
Ko-Chun Lee
Che-Yi Lin
Xiang Wang
Ching-Hwa Ho
Chen-Hsin Lien
Shu-Ping Lin
Mengjiao Li
Yen-Fu Lin
Wenwu Li
Zhigao Hu
Junhao Chu
Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
description Abstract Recently, researchers have focused on optoelectronics based on two-dimensional van der Waals materials to realize multifunctional memory and neuron applications. Layered indium selenide (InSe) semiconductors satisfy various requirements as photosensitive channel materials, and enable the realization of intriguing optoelectronic applications. Herein, we demonstrate InSe photonic devices with different trends of output currents rooted in the carrier capture/release events under various gate voltages. Furthermore, we reported an increasing/flattening/decreasing synaptic weight change index (∆W n ) via a modulated gate electric field, which we use to imitate medicine-acting metaplasticity with effective/stable/ineffective features analogous to the synaptic weight change in the nervous system of the human brain. Finally, we take advantage of the low-frequency noise (LFN) measurements and the energy-band explanation to verify the rationality of carrier capture-assisted optoelectronics applied to neural simulation at the device level. Utilizing optoelectronics to simulate essential biomedical neurobehaviors, we experimentally demonstrate the feasibility and meaningfulness of combining electronic engineering with biomedical neurology.
format article
author Qianfan Nie
Caifang Gao
Feng-Shou Yang
Ko-Chun Lee
Che-Yi Lin
Xiang Wang
Ching-Hwa Ho
Chen-Hsin Lien
Shu-Ping Lin
Mengjiao Li
Yen-Fu Lin
Wenwu Li
Zhigao Hu
Junhao Chu
author_facet Qianfan Nie
Caifang Gao
Feng-Shou Yang
Ko-Chun Lee
Che-Yi Lin
Xiang Wang
Ching-Hwa Ho
Chen-Hsin Lien
Shu-Ping Lin
Mengjiao Li
Yen-Fu Lin
Wenwu Li
Zhigao Hu
Junhao Chu
author_sort Qianfan Nie
title Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
title_short Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
title_full Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
title_fullStr Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
title_full_unstemmed Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity
title_sort carrier-capture-assisted optoelectronics based on van der waals materials to imitate medicine-acting metaplasticity
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/43e82bac18184adb98152506e92765a3
work_keys_str_mv AT qianfannie carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT caifanggao carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT fengshouyang carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT kochunlee carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT cheyilin carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT xiangwang carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT chinghwaho carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT chenhsinlien carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT shupinglin carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT mengjiaoli carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT yenfulin carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT wenwuli carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT zhigaohu carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
AT junhaochu carriercaptureassistedoptoelectronicsbasedonvanderwaalsmaterialstoimitatemedicineactingmetaplasticity
_version_ 1718379162544111616