Pharmacological HIF-inhibition attenuates postoperative adhesion formation
Abstract Peritoneal adhesions represent a common complication of abdominal surgery, and tissue hypoxia is a main determinant in adhesion formation. Reliable therapeutic options to reduce peritoneal adhesions are scarce. We investigated whether the formation of postsurgical adhesions can be affected...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43eac480f7274873bf568b3a53b3ff8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:43eac480f7274873bf568b3a53b3ff8a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:43eac480f7274873bf568b3a53b3ff8a2021-12-02T15:05:31ZPharmacological HIF-inhibition attenuates postoperative adhesion formation10.1038/s41598-017-13638-z2045-2322https://doaj.org/article/43eac480f7274873bf568b3a53b3ff8a2017-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-13638-zhttps://doaj.org/toc/2045-2322Abstract Peritoneal adhesions represent a common complication of abdominal surgery, and tissue hypoxia is a main determinant in adhesion formation. Reliable therapeutic options to reduce peritoneal adhesions are scarce. We investigated whether the formation of postsurgical adhesions can be affected by pharmacological interference with hypoxia-inducible factors (HIFs). Mice were treated with a small molecule HIF-inhibitor, YC-1 (3-[5′-Hydroxymethyl-2′-furyl]-1-benzyl-indazole), or vehicle three days before and seven days after induction of peritoneal adhesions or, alternatively, once during induction of peritoneal adhesions. Pretreatment or single intraperitoneal lavage with YC-1 significantly reduced postoperative adhesion formation without prompting systemic adverse effects. Expression analyses of cytokines in peritoneal tissue and fluid and in vitro assays applying macrophages and peritoneal fibroblasts indicated that this effect was cooperatively mediated by various putatively HIF-1α-dependent mechanisms, comprising attenuated pro-inflammatory activation of macrophages, impaired recruitment and activation of peritoneal fibroblasts, mitigated epithelial-mesenchymal-transition (EMT), as well as enhanced fibrinolysis and impaired angiogenesis. Thus, this study identifies prevention of postsurgical peritoneal adhesions as a novel and promising field for the application of HIF inhibitors in clinical practice.Moritz J. StrowitzkiAlina S. RitterPraveen RadhakrishnanJonathan M. HarnossVanessa M. OpitzMarvin BillerJulian WehrmannUlrich KepplerJana ScheerMarkus WallwienerThomas SchmidtAlexis UlrichMartin SchneiderNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Moritz J. Strowitzki Alina S. Ritter Praveen Radhakrishnan Jonathan M. Harnoss Vanessa M. Opitz Marvin Biller Julian Wehrmann Ulrich Keppler Jana Scheer Markus Wallwiener Thomas Schmidt Alexis Ulrich Martin Schneider Pharmacological HIF-inhibition attenuates postoperative adhesion formation |
description |
Abstract Peritoneal adhesions represent a common complication of abdominal surgery, and tissue hypoxia is a main determinant in adhesion formation. Reliable therapeutic options to reduce peritoneal adhesions are scarce. We investigated whether the formation of postsurgical adhesions can be affected by pharmacological interference with hypoxia-inducible factors (HIFs). Mice were treated with a small molecule HIF-inhibitor, YC-1 (3-[5′-Hydroxymethyl-2′-furyl]-1-benzyl-indazole), or vehicle three days before and seven days after induction of peritoneal adhesions or, alternatively, once during induction of peritoneal adhesions. Pretreatment or single intraperitoneal lavage with YC-1 significantly reduced postoperative adhesion formation without prompting systemic adverse effects. Expression analyses of cytokines in peritoneal tissue and fluid and in vitro assays applying macrophages and peritoneal fibroblasts indicated that this effect was cooperatively mediated by various putatively HIF-1α-dependent mechanisms, comprising attenuated pro-inflammatory activation of macrophages, impaired recruitment and activation of peritoneal fibroblasts, mitigated epithelial-mesenchymal-transition (EMT), as well as enhanced fibrinolysis and impaired angiogenesis. Thus, this study identifies prevention of postsurgical peritoneal adhesions as a novel and promising field for the application of HIF inhibitors in clinical practice. |
format |
article |
author |
Moritz J. Strowitzki Alina S. Ritter Praveen Radhakrishnan Jonathan M. Harnoss Vanessa M. Opitz Marvin Biller Julian Wehrmann Ulrich Keppler Jana Scheer Markus Wallwiener Thomas Schmidt Alexis Ulrich Martin Schneider |
author_facet |
Moritz J. Strowitzki Alina S. Ritter Praveen Radhakrishnan Jonathan M. Harnoss Vanessa M. Opitz Marvin Biller Julian Wehrmann Ulrich Keppler Jana Scheer Markus Wallwiener Thomas Schmidt Alexis Ulrich Martin Schneider |
author_sort |
Moritz J. Strowitzki |
title |
Pharmacological HIF-inhibition attenuates postoperative adhesion formation |
title_short |
Pharmacological HIF-inhibition attenuates postoperative adhesion formation |
title_full |
Pharmacological HIF-inhibition attenuates postoperative adhesion formation |
title_fullStr |
Pharmacological HIF-inhibition attenuates postoperative adhesion formation |
title_full_unstemmed |
Pharmacological HIF-inhibition attenuates postoperative adhesion formation |
title_sort |
pharmacological hif-inhibition attenuates postoperative adhesion formation |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/43eac480f7274873bf568b3a53b3ff8a |
work_keys_str_mv |
AT moritzjstrowitzki pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT alinasritter pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT praveenradhakrishnan pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT jonathanmharnoss pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT vanessamopitz pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT marvinbiller pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT julianwehrmann pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT ulrichkeppler pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT janascheer pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT markuswallwiener pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT thomasschmidt pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT alexisulrich pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation AT martinschneider pharmacologicalhifinhibitionattenuatespostoperativeadhesionformation |
_version_ |
1718388761141706752 |