Phenothiazines Enhance Mild Hypothermia-induced Neuroprotection via PI3K/Akt Regulation in Experimental Stroke

Abstract Physical hypothermia has long been considered a promising neuroprotective treatment of ischemic stroke, but the treatment’s various complications along with the impractical duration and depth of therapy significantly narrow its clinical scope. In the present study, the model of reversible r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hong An, Yunxia Duan, Di Wu, James Yip, Omar Elmadhoun, Joshua C. Wright, Wenjuan Shi, Kaiyin Liu, Xiaoduo He, Jingfei Shi, Fang Jiang, Xunming Ji, Yuchuan Ding
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/43ed0bf086ca49439ce752cf2b58ae76
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Physical hypothermia has long been considered a promising neuroprotective treatment of ischemic stroke, but the treatment’s various complications along with the impractical duration and depth of therapy significantly narrow its clinical scope. In the present study, the model of reversible right middle cerebral artery occlusion (MCAO) for 2 h was used. We combined hypothermia (33–35 °C for 1 h) with phenothiazine neuroleptics (chlorpromazine & promethazine) as additive neuroprotectants, with the aim of augmenting its efficacy while only using mild temperatures. We also investigated its therapeutic effects on the Phosphatidylinositol 3 kinase/Protein kinase B (PI3K/Akt) apoptotic pathway. The combination treatment achieved reduction in ischemic rat temperatures in the rectum, cortex and striatum significantly (P < 0.01) faster than hypothermia alone, accompanied by more obvious (P < 0.01) reduction of brain infarct volume and neurological deficits. The combination treatment remarkably (P < 0.05) increased expression of p-Akt and anti-apoptotic proteins (Bcl-2 and Bcl-xL), while reduced expression of pro-apoptotic proteins (AIF and Bax). Finally, the treatment’s neuroprotective effects were blocked by a p-Akt inhibitor. By combining hypothermia with phenothiazines, we significantly enhanced the neuroprotective effects of mild hypothermia. This study also sheds light on the possible molecular mechanism for these effects which involves the PI3K/Akt signaling and apoptotic pathway.