Optimized Extreme Learning Machine-Based Main Bearing Temperature Monitoring Considering Ambient Conditions’ Effects
Wind Turbines (WTs) are exposed to harsh conditions and can experience extreme weather, such as blizzards and cold waves, which can directly affect temperature monitoring. This paper analyzes the effects of ambient conditions on WT monitoring. To reduce these effects, a novel WT monitoring method is...
Guardado en:
Autores principales: | Zhengnan Hou, Xiaoxiao Lv, Shengxian Zhuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43f5777df17841029b37e9bf9660aa80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development and testing of a three‐dimensional ballistics model for bat strikes on wind turbines
por: Shivendra Prakash, et al.
Publicado: (2021) -
Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine
por: Sungmok Hwang, et al.
Publicado: (2021) -
SCADA Data-Based Working Condition Classification for Condition Assessment of Wind Turbine Main Transmission System
por: Huanguo Chen, et al.
Publicado: (2021) -
Monitoring and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief Network and EWMA Control Charts
por: Huajin Li, et al.
Publicado: (2021) -
The Importance of Wake Meandering on Wind Turbine Fatigue Loads in Wake
por: Jennifer Marie Rinker, et al.
Publicado: (2021)