Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident
The paper deals with collision prevention problem in maritime transport in the area of the narrow canals with predefined routes. The Dover incident, which is analysed and described in the paper, has shown that the control of the passage of ships through the critical areas must be upgraded with an au...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Vilnius Gediminas Technical University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43f94b70d8bf4348b6ddfc3f81e659f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:43f94b70d8bf4348b6ddfc3f81e659f1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:43f94b70d8bf4348b6ddfc3f81e659f12021-11-25T13:01:50ZModelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident1648-41421648-348010.3846/transport.2021.15824https://doaj.org/article/43f94b70d8bf4348b6ddfc3f81e659f12021-11-01T00:00:00Zhttps://journals.vgtu.lt/index.php/Transport/article/view/15824https://doaj.org/toc/1648-4142https://doaj.org/toc/1648-3480The paper deals with collision prevention problem in maritime transport in the area of the narrow canals with predefined routes. The Dover incident, which is analysed and described in the paper, has shown that the control of the passage of ships through the critical areas must be upgraded with an automatic supervising system, which warns the human operator of incorrect ship motion and help the operator to make the right and timely decision. The general idea is to improve the safety of navigation by introduction of automatic collision prevention based on automated supervisor helping to human operator in Vessel Traffic System (VTS) control centre. The VTS supervisor automatically monitors marine traffic by using data from Automatic Radar Plotting Aid (ARPA) radar and others sensors. Such supervisor detects real time and Course Over Ground (COG) of the vessel entering a particular sector, and then estimates the required time for vessel’s passage into another sector. VTS supervisor compares the real time and estimated time of passage of the specific ship through particular sector as a part of surveillance area. In addition, it compares and monitors the deviation of the course during transition of zones (sectors). If significant difference for both values are occurred VTS supervisor triggers a time alarm or a course alarm respectively. In the paper authors have modelled and simulated collision prevention with performed by the alarm actions of VTS supervisor improved with algorithm module based on hybrid Petri net formalism and Visual Object Net ++ tool.Rino BošnjakDanko KezićGoran BelamarićSrećko KrileVilnius Gediminas Technical Universityarticlediscrete event systems in maritimedover incidenthybrid petri netmaritime sector supervisormaritime traffic control centremaritime collision preventionvisual object netTransportation engineeringTA1001-1280ENTransport, Vol 36, Iss 4, Pp 305-316 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
discrete event systems in maritime dover incident hybrid petri net maritime sector supervisor maritime traffic control centre maritime collision prevention visual object net Transportation engineering TA1001-1280 |
spellingShingle |
discrete event systems in maritime dover incident hybrid petri net maritime sector supervisor maritime traffic control centre maritime collision prevention visual object net Transportation engineering TA1001-1280 Rino Bošnjak Danko Kezić Goran Belamarić Srećko Krile Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident |
description |
The paper deals with collision prevention problem in maritime transport in the area of the narrow canals with predefined routes. The Dover incident, which is analysed and described in the paper, has shown that the control of the passage of ships through the critical areas must be upgraded with an automatic supervising system, which warns the human operator of incorrect ship motion and help the operator to make the right and timely decision. The general idea is to improve the safety of navigation by introduction of automatic collision prevention based on automated supervisor helping to human operator in Vessel Traffic System (VTS) control centre. The VTS supervisor automatically monitors marine traffic by using data from Automatic Radar Plotting Aid (ARPA) radar and others sensors. Such supervisor detects real time and Course Over Ground (COG) of the vessel entering a particular sector, and then estimates the required time for vessel’s passage into another sector. VTS supervisor compares the real time and estimated time of passage of the specific ship through particular sector as a part of surveillance area. In addition, it compares and monitors the deviation of the course during transition of zones (sectors). If significant difference for both values are occurred VTS supervisor triggers a time alarm or a course alarm respectively. In the paper authors have modelled and simulated collision prevention with performed by the alarm actions of VTS supervisor improved with algorithm module based on hybrid Petri net formalism and Visual Object Net ++ tool. |
format |
article |
author |
Rino Bošnjak Danko Kezić Goran Belamarić Srećko Krile |
author_facet |
Rino Bošnjak Danko Kezić Goran Belamarić Srećko Krile |
author_sort |
Rino Bošnjak |
title |
Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident |
title_short |
Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident |
title_full |
Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident |
title_fullStr |
Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident |
title_full_unstemmed |
Modelling of VTS supervisor by algorithm based on Petri net: case study of Dover incident |
title_sort |
modelling of vts supervisor by algorithm based on petri net: case study of dover incident |
publisher |
Vilnius Gediminas Technical University |
publishDate |
2021 |
url |
https://doaj.org/article/43f94b70d8bf4348b6ddfc3f81e659f1 |
work_keys_str_mv |
AT rinobosnjak modellingofvtssupervisorbyalgorithmbasedonpetrinetcasestudyofdoverincident AT dankokezic modellingofvtssupervisorbyalgorithmbasedonpetrinetcasestudyofdoverincident AT goranbelamaric modellingofvtssupervisorbyalgorithmbasedonpetrinetcasestudyofdoverincident AT sreckokrile modellingofvtssupervisorbyalgorithmbasedonpetrinetcasestudyofdoverincident |
_version_ |
1718413493008334848 |