Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force
An expression for the dynamic rolling force of a rolling mill is derived in terms of the vibration and process parameters by analyzing the dynamic rolling process. A nonlinear vibration model of the rolling mill rolls is established. The amplitude-frequency and bifurcation equations are obtained usi...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
JVE International
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43fe59d5fe3045c983a140f568d59cca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:43fe59d5fe3045c983a140f568d59cca |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:43fe59d5fe3045c983a140f568d59cca2021-11-15T19:20:56ZNonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force1392-87162538-846010.21595/jve.2021.21939https://doaj.org/article/43fe59d5fe3045c983a140f568d59cca2021-08-01T00:00:00Zhttps://www.jvejournals.com/article/21939https://doaj.org/toc/1392-8716https://doaj.org/toc/2538-8460An expression for the dynamic rolling force of a rolling mill is derived in terms of the vibration and process parameters by analyzing the dynamic rolling process. A nonlinear vibration model of the rolling mill rolls is established. The amplitude-frequency and bifurcation equations are obtained using a multi-scale approximation method, to solve the dynamic equation with time-delayed displacement control. With a 1780 rolling mill as an example, it is found that the primary and cubic stiffness due to the dynamic rolling force and external excitation lead to a jump phenomenon in the vibration system, making it unstable. When the gain coefficient and delay time are taken reasonably, the amplitude of the vibration system is reduced, the resonance region shrinks, and the jump is eliminated. Finally, the bifurcation topological curve corresponding to the transition set of the vibration system is studied using the singularity theory, with and without time-delayed displacement control. The results show that the vibration of the rolling mill rolls can be restrained by varying the initial parameters and through the time-delayed displacement control. Thus, the established vibration model of the rolling mill is verified, and the effectiveness of the time-delayed displacement control in reducing the rolling mill vibration is confirmed.Rongrong PengJVE Internationalarticlerolling milldynamic rolling forcetime-delayed displacement controlsingularitybifurcationMechanical engineering and machineryTJ1-1570ENJournal of Vibroengineering, Vol 23, Iss 7, Pp 1535-1548 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
rolling mill dynamic rolling force time-delayed displacement control singularity bifurcation Mechanical engineering and machinery TJ1-1570 |
spellingShingle |
rolling mill dynamic rolling force time-delayed displacement control singularity bifurcation Mechanical engineering and machinery TJ1-1570 Rongrong Peng Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force |
description |
An expression for the dynamic rolling force of a rolling mill is derived in terms of the vibration and process parameters by analyzing the dynamic rolling process. A nonlinear vibration model of the rolling mill rolls is established. The amplitude-frequency and bifurcation equations are obtained using a multi-scale approximation method, to solve the dynamic equation with time-delayed displacement control. With a 1780 rolling mill as an example, it is found that the primary and cubic stiffness due to the dynamic rolling force and external excitation lead to a jump phenomenon in the vibration system, making it unstable. When the gain coefficient and delay time are taken reasonably, the amplitude of the vibration system is reduced, the resonance region shrinks, and the jump is eliminated. Finally, the bifurcation topological curve corresponding to the transition set of the vibration system is studied using the singularity theory, with and without time-delayed displacement control. The results show that the vibration of the rolling mill rolls can be restrained by varying the initial parameters and through the time-delayed displacement control. Thus, the established vibration model of the rolling mill is verified, and the effectiveness of the time-delayed displacement control in reducing the rolling mill vibration is confirmed. |
format |
article |
author |
Rongrong Peng |
author_facet |
Rongrong Peng |
author_sort |
Rongrong Peng |
title |
Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force |
title_short |
Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force |
title_full |
Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force |
title_fullStr |
Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force |
title_full_unstemmed |
Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force |
title_sort |
nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force |
publisher |
JVE International |
publishDate |
2021 |
url |
https://doaj.org/article/43fe59d5fe3045c983a140f568d59cca |
work_keys_str_mv |
AT rongrongpeng nonlinearvibrationcharacteristicsandtimedelayeddisplacementcontrolofrollingmillunderdynamicrollingforce |
_version_ |
1718426840475893760 |