Robust adaptive Kalman filter for strapdown inertial navigation system dynamic alignment
Abstract The measurement noise covariance R plays a vital role in the Kalman filter (KF) algorithm. Traditionally, a constant R is obtained by experience or experiments. However, the KF cannot achieve optimal estimation using constant R under non‐Gaussian conditions. A robust strategy for adaptive e...
Guardado en:
Autores principales: | Bing Zhu, Ding Li, Zuohu Li, Hongyang He, Xing Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43fefd99c1724a938b29120ec1298989 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Singular value decomposition‐based iterative robust cubature Kalman filtering and its application for integrated global positioning system/strapdown inertial navigation system navigation
por: Zhangjun Yu, et al.
Publicado: (2021) -
Adaptive grid‐driven probability hypothesis density filter for multi‐target tracking
por: Jinlong Yang, et al.
Publicado: (2021) -
An EKF based overlapping coalition formation game for cooperative wireless network navigation
por: Mingxing Ke, et al.
Publicado: (2021) -
A two‐layer attack‐robust protocol for IoT healthcare security
por: Sharafi Afsaneh, et al.
Publicado: (2021) -
Two‐dimensional adaptive beamforming for large planar array antennas based on weight matrix reconstruction
por: Wei Gao, et al.
Publicado: (2021)