A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage

This study analyzes the temporally resolved location and trip data of shared e-scooters over nine months in Berlin from one of Europe’s most widespread operators. We apply time, distance, and energy consumption filters on approximately 1.25 million trips for outlier detection and trip categorization...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maximilian Heumann, Tobias Kraschewski, Tim Brauner, Lukas Tilch, Michael H. Breitner
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/4407646751e44e6db7e64635df2eade1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4407646751e44e6db7e64635df2eade1
record_format dspace
spelling oai:doaj.org-article:4407646751e44e6db7e64635df2eade12021-11-25T19:01:47ZA Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage10.3390/su1322125272071-1050https://doaj.org/article/4407646751e44e6db7e64635df2eade12021-11-01T00:00:00Zhttps://www.mdpi.com/2071-1050/13/22/12527https://doaj.org/toc/2071-1050This study analyzes the temporally resolved location and trip data of shared e-scooters over nine months in Berlin from one of Europe’s most widespread operators. We apply time, distance, and energy consumption filters on approximately 1.25 million trips for outlier detection and trip categorization. Using temporally and spatially resolved trip pattern analyses, we investigate how the built environment and land use affect e-scooter trips. Further, we apply a density-based clustering algorithm to examine point of interest-specific patterns in trip generation. Our results suggest that e-scooter usage has point of interest related characteristics. Temporal peaks in e-scooter usage differ by point of interest category and indicate work-related trips at public transport stations. We prove these characteristic patterns with the statistical metric of cosine similarity. Considering average cluster velocities, we observe limited time-saving potential of e-scooter trips in congested areas near the city center.Maximilian HeumannTobias KraschewskiTim BraunerLukas TilchMichael H. BreitnerMDPI AGarticlee-scootermicro-mobilityshared-mobilityland use analysisspatiotemporal analysisspatial allocationEnvironmental effects of industries and plantsTD194-195Renewable energy sourcesTJ807-830Environmental sciencesGE1-350ENSustainability, Vol 13, Iss 12527, p 12527 (2021)
institution DOAJ
collection DOAJ
language EN
topic e-scooter
micro-mobility
shared-mobility
land use analysis
spatiotemporal analysis
spatial allocation
Environmental effects of industries and plants
TD194-195
Renewable energy sources
TJ807-830
Environmental sciences
GE1-350
spellingShingle e-scooter
micro-mobility
shared-mobility
land use analysis
spatiotemporal analysis
spatial allocation
Environmental effects of industries and plants
TD194-195
Renewable energy sources
TJ807-830
Environmental sciences
GE1-350
Maximilian Heumann
Tobias Kraschewski
Tim Brauner
Lukas Tilch
Michael H. Breitner
A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
description This study analyzes the temporally resolved location and trip data of shared e-scooters over nine months in Berlin from one of Europe’s most widespread operators. We apply time, distance, and energy consumption filters on approximately 1.25 million trips for outlier detection and trip categorization. Using temporally and spatially resolved trip pattern analyses, we investigate how the built environment and land use affect e-scooter trips. Further, we apply a density-based clustering algorithm to examine point of interest-specific patterns in trip generation. Our results suggest that e-scooter usage has point of interest related characteristics. Temporal peaks in e-scooter usage differ by point of interest category and indicate work-related trips at public transport stations. We prove these characteristic patterns with the statistical metric of cosine similarity. Considering average cluster velocities, we observe limited time-saving potential of e-scooter trips in congested areas near the city center.
format article
author Maximilian Heumann
Tobias Kraschewski
Tim Brauner
Lukas Tilch
Michael H. Breitner
author_facet Maximilian Heumann
Tobias Kraschewski
Tim Brauner
Lukas Tilch
Michael H. Breitner
author_sort Maximilian Heumann
title A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
title_short A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
title_full A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
title_fullStr A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
title_full_unstemmed A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
title_sort spatiotemporal study and location-specific trip pattern categorization of shared e-scooter usage
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/4407646751e44e6db7e64635df2eade1
work_keys_str_mv AT maximilianheumann aspatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT tobiaskraschewski aspatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT timbrauner aspatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT lukastilch aspatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT michaelhbreitner aspatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT maximilianheumann spatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT tobiaskraschewski spatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT timbrauner spatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT lukastilch spatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
AT michaelhbreitner spatiotemporalstudyandlocationspecifictrippatterncategorizationofsharedescooterusage
_version_ 1718410397140123648