A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
This study analyzes the temporally resolved location and trip data of shared e-scooters over nine months in Berlin from one of Europe’s most widespread operators. We apply time, distance, and energy consumption filters on approximately 1.25 million trips for outlier detection and trip categorization...
Guardado en:
Autores principales: | Maximilian Heumann, Tobias Kraschewski, Tim Brauner, Lukas Tilch, Michael H. Breitner |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4407646751e44e6db7e64635df2eade1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting Spatiotemporal Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional Network
por: Santi Phithakkitnukooon, et al.
Publicado: (2021) -
Micromobility, Macro Goals: Aligning scooter parking policy with broader city objectives
por: Anne Brown
Publicado: (2021) -
Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas
por: Samira Dibaj, et al.
Publicado: (2021) -
THE SOURCES OF COMPETITIVE ADVANTAGES OF ELECTRIC SCOOTER SHARING SERVICES
por: S. V. Ilkevich
Publicado: (2019) -
The (digital) medium of mobility is the message: Examining the influence of e-scooter mobile app perceptions on e-scooter use intent
por: Rabindra Ratan, et al.
Publicado: (2021)