A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage
This study analyzes the temporally resolved location and trip data of shared e-scooters over nine months in Berlin from one of Europe’s most widespread operators. We apply time, distance, and energy consumption filters on approximately 1.25 million trips for outlier detection and trip categorization...
Enregistré dans:
| Auteurs principaux: | Maximilian Heumann, Tobias Kraschewski, Tim Brauner, Lukas Tilch, Michael H. Breitner |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/4407646751e44e6db7e64635df2eade1 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting Spatiotemporal Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional Network
par: Santi Phithakkitnukooon, et autres
Publié: (2021) -
Micromobility, Macro Goals: Aligning scooter parking policy with broader city objectives
par: Anne Brown
Publié: (2021) -
Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas
par: Samira Dibaj, et autres
Publié: (2021) -
THE SOURCES OF COMPETITIVE ADVANTAGES OF ELECTRIC SCOOTER SHARING SERVICES
par: S. V. Ilkevich
Publié: (2019) -
The (digital) medium of mobility is the message: Examining the influence of e-scooter mobile app perceptions on e-scooter use intent
par: Rabindra Ratan, et autres
Publié: (2021)