A novel in vivo vascular imaging approach for hierarchical quantification of vasculature using contrast enhanced micro-computed tomography.
The vasculature of body tissues is continuously subject to remodeling processes originating at the micro-vascular level. The formation of new blood vessels (angiogenesis) is essential for a number of physiological and pathophysiological processes such as tissue regeneration, tumor development and th...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/440b4a95f0ef47ae985e770a7170ae01 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The vasculature of body tissues is continuously subject to remodeling processes originating at the micro-vascular level. The formation of new blood vessels (angiogenesis) is essential for a number of physiological and pathophysiological processes such as tissue regeneration, tumor development and the integration of artificial tissues. There are currently no time-lapsed in vivo imaging techniques providing information on the vascular network at the capillary level in a non-destructive, three-dimensional and high-resolution fashion. This paper presents a novel imaging framework based on contrast enhanced micro-computed tomography (micro-CT) for hierarchical in vivo quantification of blood vessels in mice, ranging from largest to smallest structures. The framework combines for the first time a standard morphometric approach with densitometric analysis. Validation tests showed that the method is precise and robust. Furthermore, the framework is sensitive in detecting different perfusion levels after the implementation of a murine ischemia-reperfusion model. Correlation with both histological data and micro-CT analysis of vascular corrosion casts confirmed accuracy of the method. The newly developed time-lapsed imaging approach shows high potential for in vivo monitoring of a number of different physiological and pathological conditions in angiogenesis and vascular development. |
---|