Anisotropic scaling for 3D topological models

Abstract A proposal to study topological models beyond the standard topological classification and that exhibit breakdown of Lorentz invariance is presented. The focus of the investigation relies on their anisotropic quantum critical behavior. We study anisotropic effects on three-dimensional (3D) t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Rufo, M. A. R. Griffith, Nei Lopes, Mucio A. Continentino
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4410715c04244d5b8cd5d60aca527d35
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4410715c04244d5b8cd5d60aca527d35
record_format dspace
spelling oai:doaj.org-article:4410715c04244d5b8cd5d60aca527d352021-11-21T12:16:29ZAnisotropic scaling for 3D topological models10.1038/s41598-021-01888-x2045-2322https://doaj.org/article/4410715c04244d5b8cd5d60aca527d352021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01888-xhttps://doaj.org/toc/2045-2322Abstract A proposal to study topological models beyond the standard topological classification and that exhibit breakdown of Lorentz invariance is presented. The focus of the investigation relies on their anisotropic quantum critical behavior. We study anisotropic effects on three-dimensional (3D) topological models, computing their anisotropic correlation length critical exponent $$\nu$$ ν obtained from numerical calculations of the penetration length of the zero-energy surface states as a function of the distance to the topological quantum critical point. A generalized Weyl semimetal model with broken time-reversal symmetry is introduced and studied using a modified Dirac equation. An approach to characterize topological surface states in topological insulators when applied to Fermi arcs allows to capture the anisotropic critical exponent $$\theta =\nu _{x}/\nu _{z}$$ θ = ν x / ν z . We also consider the Hopf insulator model, for which the study of the topological surface states yields unusual values for $$\nu$$ ν and for the dynamic critical exponent z. From an analysis of the energy dispersions, we propose a scaling relation $$\nu _{\bar{\alpha }}z_{\bar{\alpha }}=2q$$ ν α ¯ z α ¯ = 2 q and $$\theta =\nu _{x}/\nu _{z}=z_{z}/z_{x}$$ θ = ν x / ν z = z z / z x for $$\nu$$ ν and z that only depends on the Hopf insulator Hamiltonian parameters p and q and the axis direction $$\bar{\alpha }$$ α ¯ . An anisotropic quantum hyperscaling relation is also obtained.S. RufoM. A. R. GriffithNei LopesMucio A. ContinentinoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
S. Rufo
M. A. R. Griffith
Nei Lopes
Mucio A. Continentino
Anisotropic scaling for 3D topological models
description Abstract A proposal to study topological models beyond the standard topological classification and that exhibit breakdown of Lorentz invariance is presented. The focus of the investigation relies on their anisotropic quantum critical behavior. We study anisotropic effects on three-dimensional (3D) topological models, computing their anisotropic correlation length critical exponent $$\nu$$ ν obtained from numerical calculations of the penetration length of the zero-energy surface states as a function of the distance to the topological quantum critical point. A generalized Weyl semimetal model with broken time-reversal symmetry is introduced and studied using a modified Dirac equation. An approach to characterize topological surface states in topological insulators when applied to Fermi arcs allows to capture the anisotropic critical exponent $$\theta =\nu _{x}/\nu _{z}$$ θ = ν x / ν z . We also consider the Hopf insulator model, for which the study of the topological surface states yields unusual values for $$\nu$$ ν and for the dynamic critical exponent z. From an analysis of the energy dispersions, we propose a scaling relation $$\nu _{\bar{\alpha }}z_{\bar{\alpha }}=2q$$ ν α ¯ z α ¯ = 2 q and $$\theta =\nu _{x}/\nu _{z}=z_{z}/z_{x}$$ θ = ν x / ν z = z z / z x for $$\nu$$ ν and z that only depends on the Hopf insulator Hamiltonian parameters p and q and the axis direction $$\bar{\alpha }$$ α ¯ . An anisotropic quantum hyperscaling relation is also obtained.
format article
author S. Rufo
M. A. R. Griffith
Nei Lopes
Mucio A. Continentino
author_facet S. Rufo
M. A. R. Griffith
Nei Lopes
Mucio A. Continentino
author_sort S. Rufo
title Anisotropic scaling for 3D topological models
title_short Anisotropic scaling for 3D topological models
title_full Anisotropic scaling for 3D topological models
title_fullStr Anisotropic scaling for 3D topological models
title_full_unstemmed Anisotropic scaling for 3D topological models
title_sort anisotropic scaling for 3d topological models
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4410715c04244d5b8cd5d60aca527d35
work_keys_str_mv AT srufo anisotropicscalingfor3dtopologicalmodels
AT margriffith anisotropicscalingfor3dtopologicalmodels
AT neilopes anisotropicscalingfor3dtopologicalmodels
AT mucioacontinentino anisotropicscalingfor3dtopologicalmodels
_version_ 1718419118927904768