A machine learning method for the prediction of receptor activation in the simulation of synapses.
Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transm...
Guardado en:
Autores principales: | Jesus Montes, Elena Gomez, Angel Merchán-Pérez, Javier Defelipe, Jose-Maria Peña |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/443f184763c546e58c8a9f71a21ad60c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery.
por: Rubén Armañanzas, et al.
Publicado: (2013) -
Emulating complex simulations by machine learning methods
por: Paola Stolfi, et al.
Publicado: (2021) -
Prediction of thermal boundary resistance by the machine learning method
por: Tianzhuo Zhan, et al.
Publicado: (2017) -
Review of machine learning methods for RNA secondary structure prediction.
por: Qi Zhao, et al.
Publicado: (2021) -
Dialysis adequacy predictions using a machine learning method
por: Hyung Woo Kim, et al.
Publicado: (2021)