Motor planning flexibly optimizes performance under uncertainty about task goals
It is thought that, when goals are uncertain, actions are generated by averaging multiple possible movement plans. Here the authors show that movement planning under uncertainty instead varies flexibly depending on the speed of the movement in order to maximize success.
Enregistré dans:
Auteurs principaux: | Aaron L. Wong, Adrian M. Haith |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/44411f17e2a5436c9470430db37f85a7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Learning about climate change uncertainty enables flexible water infrastructure planning
par: Sarah Fletcher, et autres
Publié: (2019) -
Measuring the efficiency of energy planning under uncertainty
par: Sudlop Ratanakuakangwan, et autres
Publié: (2022) -
About Some Didactic Methods of Performance Independent Tasks under Conditions Forced Distance Learning
par: A. N. Tsatsulin
Publié: (2021) -
Monkeys monitor human goals in a nonmatch-to-goal interactive task.
par: Rossella Falcone, et autres
Publié: (2012) -
Robust combinatorial optimization under budgeted–ellipsoidal uncertainty
par: Jannis Kurtz
Publié: (2018)