Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings
Abstract Investigating the dynamics of biodiversity via passive acoustic monitoring is a challenging task, owing to the difficulty of identifying different animal vocalizations. Several indices have been proposed to measure acoustic complexity and to predict biodiversity. Although these indices perf...
Guardado en:
Autores principales: | Tzu-Hao Lin, Shih-Hua Fang, Yu Tsao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/444fdb5d432d46409149de5e68c9845e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Does Sound Influence Perceived Duration of Visual Motion?
por: Alessandro Carlini, et al.
Publicado: (2021) - Marine biodiversity records
-
Eastern Black Rail detection using semi-automated analysis of long-duration acoustic recordings
por: Elizabeth Znidersic, et al.
Publicado: (2021) -
The duration of a co-occurring sound modulates visual detection performance in humans.
por: Benjamin de Haas, et al.
Publicado: (2013) -
Unsupervised logic-based mechanism inference for network-driven biological processes.
por: Martina Prugger, et al.
Publicado: (2021)