Operation of Distributed Battery Considering Demand Response Using Deep Reinforcement Learning in Grid Edge Control
Battery energy storage systems (BESSs) are able to facilitate economical operation of the grid through demand response (DR), and are regarded as the most significant DR resource. Among them, distributed BESS integrating home photovoltaics (PV) have developed rapidly, and account for nearly 40% of ne...
Guardado en:
Autores principales: | Wenying Li, Ming Tang, Xinzhen Zhang, Danhui Gao, Jian Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/445e25fbd8364979ad3639d27eb2c7de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Evaluation Framework for Second-Life EV/PHEV Battery Application in Power Systems
por: Songjian Chai, et al.
Publicado: (2021) -
Edge even graceful labeling of torus grid graph
por: Daoud,Salama Nagy, et al.
Publicado: (2020) -
The Impact of Aging-Preventive Algorithms on BESS Sizing under AGC Performance Standards
por: Cristobal Morales, et al.
Publicado: (2021) -
Effect of flexible power control on batteries requirement and performance in PV power system
por: Achara Pichetjamroen, et al.
Publicado: (2022) -
A Study of Reduced Battery Degradation Through State-of-Charge Pre-Conditioning for Vehicle-to-Grid Operations
por: Truong M. N. Bui, et al.
Publicado: (2021)