Bandgap prediction of two-dimensional materials using machine learning.
The bandgap of two-dimensional (2D) materials plays an important role in their applications to various devices. For instance, the gapless nature of graphene limits the use of this material to semiconductor device applications, whereas the indirect bandgap of molybdenum disulfide is suitable for elec...
Guardado en:
Autores principales: | Yu Zhang, Wenjing Xu, Guangjie Liu, Zhiyong Zhang, Jinlong Zhu, Meng Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/448941464d5948468b9f2f67607b6209 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coulomb engineering of the bandgap and excitons in two-dimensional materials
por: Archana Raja, et al.
Publicado: (2017) -
Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO
por: Fulai Zhao, et al.
Publicado: (2020) -
Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons
por: Yu-Hui Chen, et al.
Publicado: (2021) -
Two-Dimensional TeB Structures with Anisotropic Carrier Mobility and Tunable Bandgap
por: Yukai Zhang, et al.
Publicado: (2021) -
Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain
por: Hai-Fei Zhu, et al.
Publicado: (2021)