Evaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets
Our research aims to study the properties of real shark skin in accordance with its topographical features and the biomimicry for friction reduction. In this paper, we are focusing on antifouling surface modification based on the surface roughness and frictional resistance inspired from the shark’s...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Japanese Society of Tribologists
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/449ab6777fc948d0a0bd607631a43a6d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:449ab6777fc948d0a0bd607631a43a6d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:449ab6777fc948d0a0bd607631a43a6d2021-11-05T09:30:57ZEvaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets1881-219810.2474/trol.16.70https://doaj.org/article/449ab6777fc948d0a0bd607631a43a6d2021-03-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/trol/16/1/16_70/_pdf/-char/enhttps://doaj.org/toc/1881-2198Our research aims to study the properties of real shark skin in accordance with its topographical features and the biomimicry for friction reduction. In this paper, we are focusing on antifouling surface modification based on the surface roughness and frictional resistance inspired from the shark’s denticule arrangements. Biomimetic shark skins were prepared using the silicone laminated transfer molding method to investigate the antifouling effects. Anti-algae formations were investigated to examine and assess the antifouling properties of the biomimetic shark skin surface microstructure. The results indicated that the effect of microreplication with shark skin on the surface had reduced 13% - 40% of algae formation. The characteristics of the hydrophobic properties for shark skin had also been investigated through the analysis of the contact angle (CA). Scanning electron microscopy (SEM) is used to observe the surfaces morphologies of the shark skin as well as the biomimetic shark skin. In addition to that, the frictional resistance experiment was carried out to evaluate the friction of coefficient (COF) of different surface modifications. The frictional resistance experiment for real shark skin and replicated shark skin demonstrated lowered COF value ranging from μ = 0 to 1, compared to the COF for controlled surface whereby the value ranges from μ = 0 to 5.Mohd Danial IbrahimSusan PhilipSu Shiung LamYuta SunamiJapanese Society of Tribologistsarticlebiomimeticsshark skinsurface modificationantifoulingfrictionPhysicsQC1-999Engineering (General). Civil engineering (General)TA1-2040Mechanical engineering and machineryTJ1-1570ChemistryQD1-999ENTribology Online, Vol 16, Iss 1, Pp 70-80 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
biomimetics shark skin surface modification antifouling friction Physics QC1-999 Engineering (General). Civil engineering (General) TA1-2040 Mechanical engineering and machinery TJ1-1570 Chemistry QD1-999 |
spellingShingle |
biomimetics shark skin surface modification antifouling friction Physics QC1-999 Engineering (General). Civil engineering (General) TA1-2040 Mechanical engineering and machinery TJ1-1570 Chemistry QD1-999 Mohd Danial Ibrahim Susan Philip Su Shiung Lam Yuta Sunami Evaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets |
description |
Our research aims to study the properties of real shark skin in accordance with its topographical features and the biomimicry for friction reduction. In this paper, we are focusing on antifouling surface modification based on the surface roughness and frictional resistance inspired from the shark’s denticule arrangements. Biomimetic shark skins were prepared using the silicone laminated transfer molding method to investigate the antifouling effects. Anti-algae formations were investigated to examine and assess the antifouling properties of the biomimetic shark skin surface microstructure. The results indicated that the effect of microreplication with shark skin on the surface had reduced 13% - 40% of algae formation. The characteristics of the hydrophobic properties for shark skin had also been investigated through the analysis of the contact angle (CA). Scanning electron microscopy (SEM) is used to observe the surfaces morphologies of the shark skin as well as the biomimetic shark skin. In addition to that, the frictional resistance experiment was carried out to evaluate the friction of coefficient (COF) of different surface modifications. The frictional resistance experiment for real shark skin and replicated shark skin demonstrated lowered COF value ranging from μ = 0 to 1, compared to the COF for controlled surface whereby the value ranges from μ = 0 to 5. |
format |
article |
author |
Mohd Danial Ibrahim Susan Philip Su Shiung Lam Yuta Sunami |
author_facet |
Mohd Danial Ibrahim Susan Philip Su Shiung Lam Yuta Sunami |
author_sort |
Mohd Danial Ibrahim |
title |
Evaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets |
title_short |
Evaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets |
title_full |
Evaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets |
title_fullStr |
Evaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets |
title_full_unstemmed |
Evaluation of an Antifouling Surface Inspired by Malaysian Sharks Negaprion Brevirostris and Carcharhinus Leucas Riblets |
title_sort |
evaluation of an antifouling surface inspired by malaysian sharks negaprion brevirostris and carcharhinus leucas riblets |
publisher |
Japanese Society of Tribologists |
publishDate |
2021 |
url |
https://doaj.org/article/449ab6777fc948d0a0bd607631a43a6d |
work_keys_str_mv |
AT mohddanialibrahim evaluationofanantifoulingsurfaceinspiredbymalaysiansharksnegaprionbrevirostrisandcarcharhinusleucasriblets AT susanphilip evaluationofanantifoulingsurfaceinspiredbymalaysiansharksnegaprionbrevirostrisandcarcharhinusleucasriblets AT sushiunglam evaluationofanantifoulingsurfaceinspiredbymalaysiansharksnegaprionbrevirostrisandcarcharhinusleucasriblets AT yutasunami evaluationofanantifoulingsurfaceinspiredbymalaysiansharksnegaprionbrevirostrisandcarcharhinusleucasriblets |
_version_ |
1718444284021047296 |