Cropping System Conversion led to Organic Carbon Change in China’s Mollisols Regions

Abstract Land use change driven by diet, globalization, and technology advancement have greatly influenced agricultural production and environment in the mollisols region of China, with a marked impact on the depletion of soil organic matter, a signature property of mollisols. Here we report finding...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuxin Tong, Jianguo Liu, Xiaolin Li, Jing Sun, Anna Herzberger, Dan Wei, Weifeng Zhang, Zhengxia Dou, Fusuo Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/44a5172a834941cdb1e13b9007461a08
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Land use change driven by diet, globalization, and technology advancement have greatly influenced agricultural production and environment in the mollisols region of China, with a marked impact on the depletion of soil organic matter, a signature property of mollisols. Here we report findings on soil organic carbon (SOC) change in three different cropping systems (soybean, soybean/maize, corn) in Northeast China during a 10-year time span. The results indicated that the decline rate of SOC in recent ten years (0.27 g kg−1 yr−1) has slowed down considerably compared to previous decades (1.12 g kg−1 yr−1). Crop system conversion from soybean monocropping to corn monocropping or break system was the critical factor for SOC change, and the background SOC was the second influence factor. When approaching a SOC turning point, conversion from low carbon input crop system (soybeans monocropping) to high carbon input crop system helped slow down the SOC decline (break crop) or even improve SOC (corn monocropping) in mollisols regions. This result implied that imported soybean has brought benefit for Northeast China. But for sustainable goal in China’s mollisols region, straw returning, optimized nitrogen fertilization and no tillage are all necessary whatever in continues maize or rotation system.