Face anti‐spoofing with refined triplet loss and multi‐level attention constraint network
Abstract One critical issue for existing face recognition (FR) systems is to ensure its accuracy and robustness, which calls for the development of face anti‐spoofing (FAS) algorithms to work against presentation attacks (PA). This letter proposes a novel Multi‐level Attention Constraint Network wit...
Guardado en:
Autores principales: | Xingzhong Nong, Ying Zeng, Haifeng Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/44b610422661466cac4a3d7878820c2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Benchmark Analysis on Loss-of-Flow-without-Scram Test of FFTF Using Refined SAC-3D Models
por: Siyu Lyu, et al.
Publicado: (2021) -
TSER: A Two-Stage Character Segmentation Network With Two-Stream Attention and Edge Refinement
por: Jinyingming Zhang, et al.
Publicado: (2020) -
A Refined Load Distribution Method for Large Hydropower Stations With Multiple Units Considering Constraints of Substations
por: Xiao Chen, et al.
Publicado: (2021) -
Multi-Level Refinement Feature Pyramid Network for Scale Imbalance Object Detection
por: Lubna Aziz, et al.
Publicado: (2021) -
Distribution of oil refining resources in Russia in the context of the capacity development of refiners and regions
por: Vladimir P. Klepikov, et al.
Publicado: (2021)