Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits

Metamaterial photonic integrated circuits with arrays of hybrid graphene–superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device’s optical responses, such as electromagnetic-induced transparency (E...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samane Kalhor, Stephen J. Kindness, Robert Wallis, Harvey E. Beere, Majid Ghanaatshoar, Riccardo Degl’Innocenti, Michael J. Kelly, Stephan Hofmann, Hannah J. Joyce, David A. Ritchie, Kaveh Delfanazari
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/44b86e6f3a3040b2b1afd353d309db0a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:44b86e6f3a3040b2b1afd353d309db0a
record_format dspace
spelling oai:doaj.org-article:44b86e6f3a3040b2b1afd353d309db0a2021-11-25T18:31:32ZActive Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits10.3390/nano111129992079-4991https://doaj.org/article/44b86e6f3a3040b2b1afd353d309db0a2021-11-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2999https://doaj.org/toc/2079-4991Metamaterial photonic integrated circuits with arrays of hybrid graphene–superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device’s optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (<i>T</i><sub>c</sub>) of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.Samane KalhorStephen J. KindnessRobert WallisHarvey E. BeereMajid GhanaatshoarRiccardo Degl’InnocentiMichael J. KellyStephan HofmannHannah J. JoyceDavid A. RitchieKaveh DelfanazariMDPI AGarticlehybrid photonic integrated circuitsgraphenesuperconductorsterahertz photonicsterahertz electronicselectromagnetic induced transparencyChemistryQD1-999ENNanomaterials, Vol 11, Iss 2999, p 2999 (2021)
institution DOAJ
collection DOAJ
language EN
topic hybrid photonic integrated circuits
graphene
superconductors
terahertz photonics
terahertz electronics
electromagnetic induced transparency
Chemistry
QD1-999
spellingShingle hybrid photonic integrated circuits
graphene
superconductors
terahertz photonics
terahertz electronics
electromagnetic induced transparency
Chemistry
QD1-999
Samane Kalhor
Stephen J. Kindness
Robert Wallis
Harvey E. Beere
Majid Ghanaatshoar
Riccardo Degl’Innocenti
Michael J. Kelly
Stephan Hofmann
Hannah J. Joyce
David A. Ritchie
Kaveh Delfanazari
Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits
description Metamaterial photonic integrated circuits with arrays of hybrid graphene–superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device’s optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (<i>T</i><sub>c</sub>) of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.
format article
author Samane Kalhor
Stephen J. Kindness
Robert Wallis
Harvey E. Beere
Majid Ghanaatshoar
Riccardo Degl’Innocenti
Michael J. Kelly
Stephan Hofmann
Hannah J. Joyce
David A. Ritchie
Kaveh Delfanazari
author_facet Samane Kalhor
Stephen J. Kindness
Robert Wallis
Harvey E. Beere
Majid Ghanaatshoar
Riccardo Degl’Innocenti
Michael J. Kelly
Stephan Hofmann
Hannah J. Joyce
David A. Ritchie
Kaveh Delfanazari
author_sort Samane Kalhor
title Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits
title_short Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits
title_full Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits
title_fullStr Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits
title_full_unstemmed Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits
title_sort active terahertz modulator and slow light metamaterial devices with hybrid graphene–superconductor photonic integrated circuits
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/44b86e6f3a3040b2b1afd353d309db0a
work_keys_str_mv AT samanekalhor activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT stephenjkindness activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT robertwallis activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT harveyebeere activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT majidghanaatshoar activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT riccardodeglinnocenti activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT michaeljkelly activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT stephanhofmann activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT hannahjjoyce activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT davidaritchie activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
AT kavehdelfanazari activeterahertzmodulatorandslowlightmetamaterialdeviceswithhybridgraphenesuperconductorphotonicintegratedcircuits
_version_ 1718411011091857408