A novel bZIP protein, Gsb1, is required for oxidative stress response, mating, and virulence in the human pathogen Cryptococcus neoformans
Abstract The human pathogen Cryptococcus neoformans, which causes life-threatening meningoencephalitis in immunocompromised individuals, normally faces diverse stresses in the human host. Here, we report that a novel, basic, leucine-zipper (bZIP) protein, designated Gsb1 (general stress-related bZIP...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/44bc26b80d794b11aa078c1b929a51ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The human pathogen Cryptococcus neoformans, which causes life-threatening meningoencephalitis in immunocompromised individuals, normally faces diverse stresses in the human host. Here, we report that a novel, basic, leucine-zipper (bZIP) protein, designated Gsb1 (general stress-related bZIP protein 1), is required for its normal growth and diverse stress responses. C. neoformans gsb1Δ mutants grew slowly even under non-stressed conditions and showed increased sensitivity to high or low temperatures. The hypersensitivity of gsb1Δ to oxidative and nitrosative stresses was reversed by addition of a ROS scavenger. RNA-Seq analysis during normal growth revealed increased expression of a number of genes involved in mitochondrial respiration and cell cycle, but decreased expression of several genes involved in the mating-pheromone-responsive MAPK signaling pathway. Accordingly, gsb1Δ showed defective mating and abnormal cell-cycle progression. Reflecting these pleiotropic phenotypes, gsb1Δ exhibited attenuated virulence in a murine model of cryptococcosis. Moreover, RNA-Seq analysis under oxidative stress revealed that several genes involved in ROS defense, cell-wall remodeling, and protein glycosylation were highly induced in the wild-type strain but not in gsb1Δ. Gsb1 localized exclusively in the nucleus in response to oxidative stress. In conclusion, Gsb1 is a key transcription factor modulating growth, stress responses, differentiation, and virulence in C. neoformans. |
---|