Predicting porosity, permeability, and tortuosity of porous media from images by deep learning
Abstract Convolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ( $$\varphi$$ φ ), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered....
Guardado en:
Autores principales: | Krzysztof M. Graczyk, Maciej Matyka |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/44c73faaec22405489053f3f380e5ee8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of spontaneous imbibition in fractal porous media based on modified porosity correlation
por: Yinglin Li, et al.
Publicado: (2021) -
Numerical study of the effect of tortuosity and mixed wettability on spontaneous imbibition in heterogeneous porous media
por: Zhenhan Diao, et al.
Publicado: (2021) -
Coupled porosity-fluid concentration flux-temperature waves in isotropic porous media
por: Alessio Fama, et al.
Publicado: (2021) -
Porosity Prediction of Porous Materials Deposited by Semi-Molten Spraying Particles
por: Jian-Tao Yao, et al.
Publicado: (2021) -
Mechatronic system’s permeable materials with controlled porosity
por: Povstyanoy O., et al.
Publicado: (2021)