Low-cesium rice: mutation in OsSOS2 reduces radiocesium in rice grains
Abstract In Japan, radiocesium contamination in foods has become of great concern and it is a primary issue to reduce grain radiocesium concentration in rice (Oryza sativa L.). Here, we report a low-cesium rice mutant 1 (lcs1) with the radiocesium concentration in grain about half that in the wild-t...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/44c9bb21c1f84f17ac0214498eb5e24d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract In Japan, radiocesium contamination in foods has become of great concern and it is a primary issue to reduce grain radiocesium concentration in rice (Oryza sativa L.). Here, we report a low-cesium rice mutant 1 (lcs1) with the radiocesium concentration in grain about half that in the wild-type cultivar. Genetic analyses revealed that a mutation in OsSOS2, which encodes a serine/threonine-protein kinase required for the salt overly sensitive (SOS) pathway in plants, is responsible for the decreased cesium (Cs) concentrations in lcs1. Physiological analyses showed that Cs+ uptake by lcs1 roots was significantly decreased under low-potassium (K+) conditions in the presence of sodium (Na+) (low K+/Na+). The transcript levels of several K+ and Na+ transporter genes, such as OsHAK1, OsHAK5, OsAKT1, and OsHKT2;1 were significantly down-regulated in lcs1 grown at low K+/Na+. The decreased Cs+ uptake in lcs1 might be closely related to the lower expression of these genes due to the K+/Na+ imbalance in the lcs1 roots caused by the OsSOS2 mutation. Since the lcs1 plant had no significant negative effects on agronomic traits when grown in radiocesium-contaminated paddy fields, this mutant could be used directly in agriculture for reducing radiocesium in rice grains. |
---|