Inhibitory properties of Chinese Herbal Formula SanHuang decoction on biofilm formation by antibiotic-resistant Staphylococcal strains

Abstract The aim of this study was to explore the effect of Chinese herbal SanHuang decoction (SH) on biofilm formation of antibiotic-resistant Staphylococci on titanium surface, and to explore its mechanism. Biofilm-forming ATCC 35984, ATCC 43300 and MRSE 287 were used in this study. The MICs of SH...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shaoe Zhang, Peizhao Wang, Xiaotao Shi, Honglue Tan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/44d9792e8bd34c3aabdd8236c088bdfa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The aim of this study was to explore the effect of Chinese herbal SanHuang decoction (SH) on biofilm formation of antibiotic-resistant Staphylococci on titanium surface, and to explore its mechanism. Biofilm-forming ATCC 35984, ATCC 43300 and MRSE 287 were used in this study. The MICs of SH and vancomycin against Staphylococci were determined by the broth microdilution method. Six groups were designed, namely control group (bacteria cultured with medium), 1/8MIC SH group (1MIC SH was diluted by 1/8 using TSB or saline), 1/4MIC SH group, 1/2MIC SH group, 1MIC SH group and vancomycin group (bacteria cultured with 1MIC vancomycin). The inhibitory effect on bacterial adhesion and biofilm formation were observed by the spread plate method, CV staining, SEM, and CLSM. Real-time PCR was performed to determine the effect of SH on the expression levels of ica AD and ica R gene in ATCC 35984 during the biofilm formation. The strains were found to be susceptible to SH and vancomycin with MIC of 38.75 mg/ml and 2.5 μg/ml, respectively. SH with 1 MIC and 1/2 MIC could inhibit the bacteria adhesion, showing only scattered adhesion from SEM. CLSM showed that SH with 1 MIC and 1/2 MIC inhibited the biofilm formation. The quantitative results of the spread plate method and CV staining showed that there was significant differences between the SH groups (P < 0.05). Further, with an increase in SH concentration, the inhibitory effect became more obvious when compared with control group. Among the groups, vancomycin had the strongest inhibitory effect on bacterial adhesion and biofilm formation (P < 0.01). With an increase in SH concentration, the expression levels of ica AD decreased, and the expression of ica R increased correspondingly (P < 0.05). In conclusions, SH can inhibit the biofilm formation of antibiotic-resistant Staphylococci. Its probable mechanistic activity may be through the inhibition of polysaccharide intercellular adhesin synthesis by down-regulating the expression of ica AD gene.