Systems biology informed neural networks (SBINN) predict response and novel combinations for PD-1 checkpoint blockade
Michelle Przedborski et al. report an integrative systems biology and machine learning method for predicting cancer patient responses to immunotherapy treatment. Using their method, they identify several new drug combinations that could potentially improve treatment protocols for immunotherapy.
Guardado en:
Autores principales: | Michelle Przedborski, Munisha Smalley, Saravanan Thiyagarajan, Aaron Goldman, Mohammad Kohandel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/44e3f66755784e83bdb6e51e9bad3437 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints
por: Shohei Koyama, et al.
Publicado: (2016) -
Nanosonosensitizer-Augmented Sonodynamic Therapy Combined with Checkpoint Blockade for Cancer Immunotherapy
por: Lin X, et al.
Publicado: (2021) -
Genetic variation associated with thyroid autoimmunity shapes the systemic immune response to PD-1 checkpoint blockade
por: Zia Khan, et al.
Publicado: (2021) -
PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade
por: Qi Peng, et al.
Publicado: (2020) -
Identification of MicroRNA–mRNA Networks in Melanoma and Their Association with PD-1 Checkpoint Blockade Outcomes
por: Robert A. Szczepaniak Sloane, et al.
Publicado: (2021)