An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System

In this work, we introduce and theoretically analyze a relatively simple numerical algorithm to solve a double-fractional condensate model. The mathematical system is a generalization of the famous Gross–Pitaevskii equation, which is a model consisting of two nonlinear complex-valued diffusive diffe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jorge E. Macías-Díaz, Nuria Reguera, Adán J. Serna-Reyes
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/44e97b00a5a545d29573905cd60c9526
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this work, we introduce and theoretically analyze a relatively simple numerical algorithm to solve a double-fractional condensate model. The mathematical system is a generalization of the famous Gross–Pitaevskii equation, which is a model consisting of two nonlinear complex-valued diffusive differential equations. The continuous model studied in this manuscript is a multidimensional system that includes Riesz-type spatial fractional derivatives. We prove here the relevant features of the numerical algorithm, and illustrative simulations will be shown to verify the quadratic order of convergence in both the space and time variables.