An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System

In this work, we introduce and theoretically analyze a relatively simple numerical algorithm to solve a double-fractional condensate model. The mathematical system is a generalization of the famous Gross–Pitaevskii equation, which is a model consisting of two nonlinear complex-valued diffusive diffe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jorge E. Macías-Díaz, Nuria Reguera, Adán J. Serna-Reyes
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/44e97b00a5a545d29573905cd60c9526
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:44e97b00a5a545d29573905cd60c9526
record_format dspace
spelling oai:doaj.org-article:44e97b00a5a545d29573905cd60c95262021-11-11T18:16:48ZAn Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System10.3390/math92127272227-7390https://doaj.org/article/44e97b00a5a545d29573905cd60c95262021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2727https://doaj.org/toc/2227-7390In this work, we introduce and theoretically analyze a relatively simple numerical algorithm to solve a double-fractional condensate model. The mathematical system is a generalization of the famous Gross–Pitaevskii equation, which is a model consisting of two nonlinear complex-valued diffusive differential equations. The continuous model studied in this manuscript is a multidimensional system that includes Riesz-type spatial fractional derivatives. We prove here the relevant features of the numerical algorithm, and illustrative simulations will be shown to verify the quadratic order of convergence in both the space and time variables.Jorge E. Macías-DíazNuria RegueraAdán J. Serna-ReyesMDPI AGarticlefractional Bose–Einstein modeldouble-fractional systemfully discrete modelstability and convergence analysisMathematicsQA1-939ENMathematics, Vol 9, Iss 2727, p 2727 (2021)
institution DOAJ
collection DOAJ
language EN
topic fractional Bose–Einstein model
double-fractional system
fully discrete model
stability and convergence analysis
Mathematics
QA1-939
spellingShingle fractional Bose–Einstein model
double-fractional system
fully discrete model
stability and convergence analysis
Mathematics
QA1-939
Jorge E. Macías-Díaz
Nuria Reguera
Adán J. Serna-Reyes
An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System
description In this work, we introduce and theoretically analyze a relatively simple numerical algorithm to solve a double-fractional condensate model. The mathematical system is a generalization of the famous Gross–Pitaevskii equation, which is a model consisting of two nonlinear complex-valued diffusive differential equations. The continuous model studied in this manuscript is a multidimensional system that includes Riesz-type spatial fractional derivatives. We prove here the relevant features of the numerical algorithm, and illustrative simulations will be shown to verify the quadratic order of convergence in both the space and time variables.
format article
author Jorge E. Macías-Díaz
Nuria Reguera
Adán J. Serna-Reyes
author_facet Jorge E. Macías-Díaz
Nuria Reguera
Adán J. Serna-Reyes
author_sort Jorge E. Macías-Díaz
title An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System
title_short An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System
title_full An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System
title_fullStr An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System
title_full_unstemmed An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System
title_sort efficient discrete model to approximate the solutions of a nonlinear double-fractional two-component gross–pitaevskii-type system
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/44e97b00a5a545d29573905cd60c9526
work_keys_str_mv AT jorgeemaciasdiaz anefficientdiscretemodeltoapproximatethesolutionsofanonlineardoublefractionaltwocomponentgrosspitaevskiitypesystem
AT nuriareguera anefficientdiscretemodeltoapproximatethesolutionsofanonlineardoublefractionaltwocomponentgrosspitaevskiitypesystem
AT adanjsernareyes anefficientdiscretemodeltoapproximatethesolutionsofanonlineardoublefractionaltwocomponentgrosspitaevskiitypesystem
AT jorgeemaciasdiaz efficientdiscretemodeltoapproximatethesolutionsofanonlineardoublefractionaltwocomponentgrosspitaevskiitypesystem
AT nuriareguera efficientdiscretemodeltoapproximatethesolutionsofanonlineardoublefractionaltwocomponentgrosspitaevskiitypesystem
AT adanjsernareyes efficientdiscretemodeltoapproximatethesolutionsofanonlineardoublefractionaltwocomponentgrosspitaevskiitypesystem
_version_ 1718431879998210048