New Irregular Solutions in the Spatially Distributed Fermi–Pasta–Ulam Problem
For the spatially-distributed Fermi–Pasta–Ulam (FPU) equation, irregular solutions are studied that contain components rapidly oscillating in the spatial variable, with different asymptotically large modes. The main result of this paper is the construction of families of special nonlinear systems of...
Guardado en:
Autores principales: | Sergey Kashchenko, Anna Tolbey |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/44f44441fc0f4f6da3aaa859f6de6a8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
por: Alberto M. Simões, et al.
Publicado: (2021) -
Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation via Laplace Transform
por: Daniela Marian
Publicado: (2021) -
MAD+. Introducing Misconceptions in the Temporal Analysis of the Mathematical Modelling Process of a Fermi Problem
por: Marta Pla-Castells, et al.
Publicado: (2021) -
On the Mazur-Ulam theorem for Fréchet algebras
por: Zivari-Kazempour,A., et al.
Publicado: (2020) -
On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey
por: Anna Bahyrycz, et al.
Publicado: (2021)