New Irregular Solutions in the Spatially Distributed Fermi–Pasta–Ulam Problem
For the spatially-distributed Fermi–Pasta–Ulam (FPU) equation, irregular solutions are studied that contain components rapidly oscillating in the spatial variable, with different asymptotically large modes. The main result of this paper is the construction of families of special nonlinear systems of...
Enregistré dans:
Auteurs principaux: | Sergey Kashchenko, Anna Tolbey |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/44f44441fc0f4f6da3aaa859f6de6a8e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
par: Alberto M. Simões, et autres
Publié: (2021) -
Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation via Laplace Transform
par: Daniela Marian
Publié: (2021) -
MAD+. Introducing Misconceptions in the Temporal Analysis of the Mathematical Modelling Process of a Fermi Problem
par: Marta Pla-Castells, et autres
Publié: (2021) -
On the Mazur-Ulam theorem for Fréchet algebras
par: Zivari-Kazempour,A., et autres
Publié: (2020) -
On Ulam Stability of Functional Equations in 2-Normed Spaces—A Survey
par: Anna Bahyrycz, et autres
Publié: (2021)