Predictive modeling of gene expression regulation
Abstract Background In-depth analysis of regulation networks of genes aberrantly expressed in cancer is essential for better understanding tumors and identifying key genes that could be therapeutically targeted. Results We developed a quantitative analysis approach to investigate the main biological...
Guardado en:
Autores principales: | Chiara Regondi, Maddalena Fratelli, Giovanna Damia, Federica Guffanti, Monica Ganzinelli, Matteo Matteucci, Marco Masseroli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/44fdf15ce88a4e7ebad41d54628386a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Intracellular and Intercellular Gene Regulatory Network Inference From Time-Course Individual RNA-Seq
por: Makoto Kashima, et al.
Publicado: (2021) -
A Novel Calibration Step in Gene Co-Expression Network Construction
por: Niloofar Aghaieabiane, et al.
Publicado: (2021) -
Deep representation learning of electronic health records to unlock patient stratification at scale
por: Isotta Landi, et al.
Publicado: (2020) -
Correction to: Promoting healthy teenage behaviour across three European countries through the use of a novel smartphone technology platform, PEGASO fit for future: study protocol of a quasi-experimental, controlled, multi-Centre trial
por: Elisa Puigdomenech, et al.
Publicado: (2021) -
Age and environment-related differences in gait in healthy adults using wearables
por: Matthew D. Czech, et al.
Publicado: (2020)