Predictive modeling of gene expression regulation
Abstract Background In-depth analysis of regulation networks of genes aberrantly expressed in cancer is essential for better understanding tumors and identifying key genes that could be therapeutically targeted. Results We developed a quantitative analysis approach to investigate the main biological...
Enregistré dans:
Auteurs principaux: | Chiara Regondi, Maddalena Fratelli, Giovanna Damia, Federica Guffanti, Monica Ganzinelli, Matteo Matteucci, Marco Masseroli |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/44fdf15ce88a4e7ebad41d54628386a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Intracellular and Intercellular Gene Regulatory Network Inference From Time-Course Individual RNA-Seq
par: Makoto Kashima, et autres
Publié: (2021) -
A Novel Calibration Step in Gene Co-Expression Network Construction
par: Niloofar Aghaieabiane, et autres
Publié: (2021) -
Deep representation learning of electronic health records to unlock patient stratification at scale
par: Isotta Landi, et autres
Publié: (2020) -
Correction to: Promoting healthy teenage behaviour across three European countries through the use of a novel smartphone technology platform, PEGASO fit for future: study protocol of a quasi-experimental, controlled, multi-Centre trial
par: Elisa Puigdomenech, et autres
Publié: (2021) -
Age and environment-related differences in gait in healthy adults using wearables
par: Matthew D. Czech, et autres
Publié: (2020)