Load forecasting of hybrid deep learning model considering accumulated temperature effect
Considering the non-linear, multi-dimensionality and time-series of load data, a short-term power load forecasting method based on TCN-DNN hybrid deep learning model is proposed. Firstly, considering the common influencing factors of short-term load, and analysing the correlation, the temperature va...
Guardado en:
Autores principales: | Haihong Bian, Qian Wang, Guozheng Xu, Xiu Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/450c6fdd4d0f49dc91a33c709c42c59c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting Electricity Load With Hybrid Scalable Model Based on Stacked Non Linear Residual Approach
por: Ayush Sinha, et al.
Publicado: (2021) -
Electrical Load Demand Forecasting Using Feed-Forward Neural Networks
por: Eduardo Machado, et al.
Publicado: (2021) -
GCN-CNVPS: Novel Method for Cooperative Neighboring Vehicle Positioning System Based on Graph Convolution Network
por: Chia-Hung Lin, et al.
Publicado: (2021) -
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting
por: Namrye Son
Publicado: (2021)