Recurrent Context Window Networks for Italian Named Entity Recognizer

In this paper, we introduce a Deep Neural Network (DNN) for engineering Named Entity Recognizers (NERs) in Italian. Our network uses a sliding window of word contexts to predict tags. It relies on a simple word-level log-likelihood as a cost function and uses a new recurrent feedback mechanism to en...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniele Bonadiman, Alessandro Moschitti, Aliaksei Severyn
Formato: article
Lenguaje:EN
Publicado: Accademia University Press 2016
Materias:
H
Acceso en línea:https://doaj.org/article/4524f7e164484008a35bc7a5fbe1b5b2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4524f7e164484008a35bc7a5fbe1b5b2
record_format dspace
spelling oai:doaj.org-article:4524f7e164484008a35bc7a5fbe1b5b22021-12-02T09:52:33ZRecurrent Context Window Networks for Italian Named Entity Recognizer2499-455310.4000/ijcol.358https://doaj.org/article/4524f7e164484008a35bc7a5fbe1b5b22016-06-01T00:00:00Zhttp://journals.openedition.org/ijcol/358https://doaj.org/toc/2499-4553In this paper, we introduce a Deep Neural Network (DNN) for engineering Named Entity Recognizers (NERs) in Italian. Our network uses a sliding window of word contexts to predict tags. It relies on a simple word-level log-likelihood as a cost function and uses a new recurrent feedback mechanism to ensure that the dependencies between the output tags are properly modeled. These choices make our network simple and computationally efficient. Unlike previous best NERs for Italian, our model does not require manual-designed features, external parsers or additional resources. The evaluation on the Evalita 2009 benchmark shows that our DNN performs on par with the best NERs, outperforming the state of the art when gazetteer features are used.Daniele BonadimanAlessandro MoschittiAliaksei SeverynAccademia University PressarticleSocial SciencesHComputational linguistics. Natural language processingP98-98.5ENIJCoL, Vol 2, Iss 1, Pp 77-86 (2016)
institution DOAJ
collection DOAJ
language EN
topic Social Sciences
H
Computational linguistics. Natural language processing
P98-98.5
spellingShingle Social Sciences
H
Computational linguistics. Natural language processing
P98-98.5
Daniele Bonadiman
Alessandro Moschitti
Aliaksei Severyn
Recurrent Context Window Networks for Italian Named Entity Recognizer
description In this paper, we introduce a Deep Neural Network (DNN) for engineering Named Entity Recognizers (NERs) in Italian. Our network uses a sliding window of word contexts to predict tags. It relies on a simple word-level log-likelihood as a cost function and uses a new recurrent feedback mechanism to ensure that the dependencies between the output tags are properly modeled. These choices make our network simple and computationally efficient. Unlike previous best NERs for Italian, our model does not require manual-designed features, external parsers or additional resources. The evaluation on the Evalita 2009 benchmark shows that our DNN performs on par with the best NERs, outperforming the state of the art when gazetteer features are used.
format article
author Daniele Bonadiman
Alessandro Moschitti
Aliaksei Severyn
author_facet Daniele Bonadiman
Alessandro Moschitti
Aliaksei Severyn
author_sort Daniele Bonadiman
title Recurrent Context Window Networks for Italian Named Entity Recognizer
title_short Recurrent Context Window Networks for Italian Named Entity Recognizer
title_full Recurrent Context Window Networks for Italian Named Entity Recognizer
title_fullStr Recurrent Context Window Networks for Italian Named Entity Recognizer
title_full_unstemmed Recurrent Context Window Networks for Italian Named Entity Recognizer
title_sort recurrent context window networks for italian named entity recognizer
publisher Accademia University Press
publishDate 2016
url https://doaj.org/article/4524f7e164484008a35bc7a5fbe1b5b2
work_keys_str_mv AT danielebonadiman recurrentcontextwindownetworksforitaliannamedentityrecognizer
AT alessandromoschitti recurrentcontextwindownetworksforitaliannamedentityrecognizer
AT aliakseiseveryn recurrentcontextwindownetworksforitaliannamedentityrecognizer
_version_ 1718397940636057600