Recurrent Context Window Networks for Italian Named Entity Recognizer
In this paper, we introduce a Deep Neural Network (DNN) for engineering Named Entity Recognizers (NERs) in Italian. Our network uses a sliding window of word contexts to predict tags. It relies on a simple word-level log-likelihood as a cost function and uses a new recurrent feedback mechanism to en...
Guardado en:
Autores principales: | Daniele Bonadiman, Alessandro Moschitti, Aliaksei Severyn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4524f7e164484008a35bc7a5fbe1b5b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multitask Learning with Deep Neural Networks for Community Question Answering
por: Daniele Bonadiman, et al.
Publicado: (2017) -
Entity Linking for the Semantic Annotation of Italian Tweets
por: Pierpaolo Basile, et al.
Publicado: (2016) -
Question Dependent Recurrent Entity Network for Question Answering
por: Andrea Madotto, et al.
Publicado: (2017) -
Entities as Topic Labels: Combining Entity Linking and Labeled LDA to Improve Topic Interpretability and Evaluability
por: Anne Lauscher, et al.
Publicado: (2016) -
Voci della Grande Guerra. An Annotated Corpus of Italian Texts on World War I
por: Alessandro Lenci, et al.
Publicado: (2016)