Recurrent Context Window Networks for Italian Named Entity Recognizer
In this paper, we introduce a Deep Neural Network (DNN) for engineering Named Entity Recognizers (NERs) in Italian. Our network uses a sliding window of word contexts to predict tags. It relies on a simple word-level log-likelihood as a cost function and uses a new recurrent feedback mechanism to en...
Enregistré dans:
Auteurs principaux: | Daniele Bonadiman, Alessandro Moschitti, Aliaksei Severyn |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Accademia University Press
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4524f7e164484008a35bc7a5fbe1b5b2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multitask Learning with Deep Neural Networks for Community Question Answering
par: Daniele Bonadiman, et autres
Publié: (2017) -
Entity Linking for the Semantic Annotation of Italian Tweets
par: Pierpaolo Basile, et autres
Publié: (2016) -
Question Dependent Recurrent Entity Network for Question Answering
par: Andrea Madotto, et autres
Publié: (2017) -
Entities as Topic Labels: Combining Entity Linking and Labeled LDA to Improve Topic Interpretability and Evaluability
par: Anne Lauscher, et autres
Publié: (2016) -
Voci della Grande Guerra. An Annotated Corpus of Italian Texts on World War I
par: Alessandro Lenci, et autres
Publié: (2016)