Direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures

Abstract A comprehensive numerical study of three-dimensional surface instability patterns is presented. The formation of wrinkles is a consequence of deformation instability when a thin film, bonded to a compliant substrate, is subject to in-plane compressive loading. We apply a recently developed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siavash Nikravesh, Donghyeon Ryu, Yu-Lin Shen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/452e3ff77ca54a2999261f6a846ab36e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:452e3ff77ca54a2999261f6a846ab36e
record_format dspace
spelling oai:doaj.org-article:452e3ff77ca54a2999261f6a846ab36e2021-12-02T15:07:54ZDirect numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures10.1038/s41598-021-95414-82045-2322https://doaj.org/article/452e3ff77ca54a2999261f6a846ab36e2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95414-8https://doaj.org/toc/2045-2322Abstract A comprehensive numerical study of three-dimensional surface instability patterns is presented. The formation of wrinkles is a consequence of deformation instability when a thin film, bonded to a compliant substrate, is subject to in-plane compressive loading. We apply a recently developed computational approach to directly simulate complex surface wrinkling from pre-instability to post-instability in a straightforward manner, covering the entire biaxial loading spectrum from pure uniaxial to pure equi-biaxial compression. The simulations use embedded imperfections with perturbed material properties at the film-substrate interface. This approach not only triggers the first bifurcation mode but also activates subsequent post-buckling states, thus capable of predicting the temporal evolution of wrinkle patterns in one simulation run. The state of biaxiality is found to influence the surface pattern significantly, and each bifurcation mode can be traced back to certain abrupt changes in the overall load–displacement response. Our systematic study reveals how the loading condition dictates the formation of various instability modes including one-dimensional (1D) sinusoidal wrinkles, herringbone, labyrinth, and checkerboard.Siavash NikraveshDonghyeon RyuYu-Lin ShenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Siavash Nikravesh
Donghyeon Ryu
Yu-Lin Shen
Direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures
description Abstract A comprehensive numerical study of three-dimensional surface instability patterns is presented. The formation of wrinkles is a consequence of deformation instability when a thin film, bonded to a compliant substrate, is subject to in-plane compressive loading. We apply a recently developed computational approach to directly simulate complex surface wrinkling from pre-instability to post-instability in a straightforward manner, covering the entire biaxial loading spectrum from pure uniaxial to pure equi-biaxial compression. The simulations use embedded imperfections with perturbed material properties at the film-substrate interface. This approach not only triggers the first bifurcation mode but also activates subsequent post-buckling states, thus capable of predicting the temporal evolution of wrinkle patterns in one simulation run. The state of biaxiality is found to influence the surface pattern significantly, and each bifurcation mode can be traced back to certain abrupt changes in the overall load–displacement response. Our systematic study reveals how the loading condition dictates the formation of various instability modes including one-dimensional (1D) sinusoidal wrinkles, herringbone, labyrinth, and checkerboard.
format article
author Siavash Nikravesh
Donghyeon Ryu
Yu-Lin Shen
author_facet Siavash Nikravesh
Donghyeon Ryu
Yu-Lin Shen
author_sort Siavash Nikravesh
title Direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures
title_short Direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures
title_full Direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures
title_fullStr Direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures
title_full_unstemmed Direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures
title_sort direct numerical simulations of three-dimensional surface instability patterns in thin film-compliant substrate structures
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/452e3ff77ca54a2999261f6a846ab36e
work_keys_str_mv AT siavashnikravesh directnumericalsimulationsofthreedimensionalsurfaceinstabilitypatternsinthinfilmcompliantsubstratestructures
AT donghyeonryu directnumericalsimulationsofthreedimensionalsurfaceinstabilitypatternsinthinfilmcompliantsubstratestructures
AT yulinshen directnumericalsimulationsofthreedimensionalsurfaceinstabilitypatternsinthinfilmcompliantsubstratestructures
_version_ 1718388310622076928