A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration

ABSTRACT Bacteria rarely inhabit infection sites alone, instead residing in diverse, multispecies communities. Despite this fact, bacterial pathogenesis studies primarily focus on monoculture infections, overlooking how community interactions influence the course of disease. In this study, we used g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Apollo Stacy, Derek Fleming, Richard J. Lamont, Kendra P. Rumbaugh, Marvin Whiteley
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2016
Materias:
Acceso en línea:https://doaj.org/article/4548db633dfc4c27a80d8f29e436450a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4548db633dfc4c27a80d8f29e436450a
record_format dspace
spelling oai:doaj.org-article:4548db633dfc4c27a80d8f29e436450a2021-11-15T15:50:16ZA Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration10.1128/mBio.00782-162150-7511https://doaj.org/article/4548db633dfc4c27a80d8f29e436450a2016-07-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00782-16https://doaj.org/toc/2150-7511ABSTRACT Bacteria rarely inhabit infection sites alone, instead residing in diverse, multispecies communities. Despite this fact, bacterial pathogenesis studies primarily focus on monoculture infections, overlooking how community interactions influence the course of disease. In this study, we used global mutant fitness profiling (transposon sequencing [Tn-seq]) to determine the genetic requirements for the pathogenic bacterium Aggregatibacter actinomycetemcomitans to cause disease when coinfecting with the commensal bacterium Streptococcus gordonii. Our results show that S. gordonii extensively alters A. actinomycetemcomitans requirements for virulence factors and biosynthetic pathways during infection. In addition, we discovered that the presence of S. gordonii enhances the bioavailability of oxygen during infection, allowing A. actinomycetemcomitans to shift from a primarily fermentative to a respiratory metabolism that enhances its growth yields and persistence. Mechanistically, respiratory metabolism enhances the fitness of A. actinomycetemcomitans in vivo by increasing ATP yields via central metabolism and creating a proton motive force. Our results reveal that, similar to cross-feeding, where one species provides another species with a nutrient, commensal bacteria can also provide electron acceptors that promote the respiratory growth and fitness of pathogens in vivo, an interaction that we term cross-respiration. IMPORTANCE Commensal bacteria can enhance the virulence of pathogens in mixed-species infections. However, knowledge of the mechanisms underlying this clinically relevant phenomenon is lacking. To bridge this gap, we comprehensively determined the genes a pathogen needs to establish coinfection with a commensal. Our findings show that the metabolism of the pathogen is low-energy-yielding in monoinfection, but in coinfection, the commensal improves the fitness of the pathogen by increasing the bioavailability of oxygen, thereby shifting the pathogen toward a high-energy-yielding metabolism. Similar to cross-feeding, this interaction, which we term cross-respiration, illustrates that commensal bacteria can provide electron acceptors that enhance the virulence of pathogens during infection.Apollo StacyDerek FlemingRichard J. LamontKendra P. RumbaughMarvin WhiteleyAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 7, Iss 3 (2016)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Apollo Stacy
Derek Fleming
Richard J. Lamont
Kendra P. Rumbaugh
Marvin Whiteley
A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration
description ABSTRACT Bacteria rarely inhabit infection sites alone, instead residing in diverse, multispecies communities. Despite this fact, bacterial pathogenesis studies primarily focus on monoculture infections, overlooking how community interactions influence the course of disease. In this study, we used global mutant fitness profiling (transposon sequencing [Tn-seq]) to determine the genetic requirements for the pathogenic bacterium Aggregatibacter actinomycetemcomitans to cause disease when coinfecting with the commensal bacterium Streptococcus gordonii. Our results show that S. gordonii extensively alters A. actinomycetemcomitans requirements for virulence factors and biosynthetic pathways during infection. In addition, we discovered that the presence of S. gordonii enhances the bioavailability of oxygen during infection, allowing A. actinomycetemcomitans to shift from a primarily fermentative to a respiratory metabolism that enhances its growth yields and persistence. Mechanistically, respiratory metabolism enhances the fitness of A. actinomycetemcomitans in vivo by increasing ATP yields via central metabolism and creating a proton motive force. Our results reveal that, similar to cross-feeding, where one species provides another species with a nutrient, commensal bacteria can also provide electron acceptors that promote the respiratory growth and fitness of pathogens in vivo, an interaction that we term cross-respiration. IMPORTANCE Commensal bacteria can enhance the virulence of pathogens in mixed-species infections. However, knowledge of the mechanisms underlying this clinically relevant phenomenon is lacking. To bridge this gap, we comprehensively determined the genes a pathogen needs to establish coinfection with a commensal. Our findings show that the metabolism of the pathogen is low-energy-yielding in monoinfection, but in coinfection, the commensal improves the fitness of the pathogen by increasing the bioavailability of oxygen, thereby shifting the pathogen toward a high-energy-yielding metabolism. Similar to cross-feeding, this interaction, which we term cross-respiration, illustrates that commensal bacteria can provide electron acceptors that enhance the virulence of pathogens during infection.
format article
author Apollo Stacy
Derek Fleming
Richard J. Lamont
Kendra P. Rumbaugh
Marvin Whiteley
author_facet Apollo Stacy
Derek Fleming
Richard J. Lamont
Kendra P. Rumbaugh
Marvin Whiteley
author_sort Apollo Stacy
title A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration
title_short A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration
title_full A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration
title_fullStr A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration
title_full_unstemmed A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration
title_sort commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration
publisher American Society for Microbiology
publishDate 2016
url https://doaj.org/article/4548db633dfc4c27a80d8f29e436450a
work_keys_str_mv AT apollostacy acommensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT derekfleming acommensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT richardjlamont acommensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT kendraprumbaugh acommensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT marvinwhiteley acommensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT apollostacy commensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT derekfleming commensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT richardjlamont commensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT kendraprumbaugh commensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
AT marvinwhiteley commensalbacteriumpromotesvirulenceofanopportunisticpathogenviacrossrespiration
_version_ 1718427454384635904