Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk
Mammographic density represents one the strongest predictors of breast cancer risk. Here the authors perform genome-wide association study meta-analysis of women screened with full-field digital mammography and identify 31 previously unreported loci associated with mammographic density phenotypes.
Guardado en:
Autores principales: | Weiva Sieh, Joseph H. Rothstein, Robert J. Klein, Stacey E. Alexeeff, Lori C. Sakoda, Eric Jorgenson, Russell B. McBride, Rebecca E. Graff, Valerie McGuire, Ninah Achacoso, Luana Acton, Rhea Y. Liang, Jafi A. Lipson, Daniel L. Rubin, Martin J. Yaffe, Douglas F. Easton, Catherine Schaefer, Neil Risch, Alice S. Whittemore, Laurel A. Habel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/455a1267540b4504a0c8a2bad60954fb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated percent mammographic density, mammographic texture variation, and risk of breast cancer: a nested case-control study
por: Erica T. Warner, et al.
Publicado: (2021) -
Coffee, Tea, and Mammographic Breast Density in Premenopausal Women
por: Adashi Margaret Odama, et al.
Publicado: (2021) -
Mammographic density, blood telomere length and lipid peroxidation
por: Natalie J. Erdmann, et al.
Publicado: (2017) -
Association between skeletal muscle mass and mammographic breast density
por: Kwan Ho Lee, et al.
Publicado: (2021) -
Barriers to identification and implementation of energy efficiency mechanisms and enhancing renewable energy technologies in the Caribbean
por: McGuire, Gregory
Publicado: (2016)