Enabling deeper learning on big data for materials informatics applications
Abstract The application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the applic...
Guardado en:
Autores principales: | Dipendra Jha, Vishu Gupta, Logan Ward, Zijiang Yang, Christopher Wolverton, Ian Foster, Wei-keng Liao, Alok Choudhary, Ankit Agrawal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/45629f7576974167bac8df406876d61a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
por: Dipendra Jha, et al.
Publicado: (2018) -
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Vishu Gupta, et al.
Publicado: (2021) -
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Dipendra Jha, et al.
Publicado: (2019) -
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Dipendra Jha, et al.
Publicado: (2020) -
Venezuela: Deeper into the Abyss
por: Buxton,Julia
Publicado: (2018)