Temporal feature adaptive non-intrusive load monitoring via unsupervised probability density evolution
Toward the smart power and energy consumption, non-intrusive load monitoring is emerging as the promising technical assistance of intelligent energy user. The load behaviors of individual power users are distinct, that is potential to enhance the monitoring performance if effectively addressed. In t...
Guardado en:
Autores principales: | Yu Liu, Tiancheng E. Song, Xiaolong Sun, Shan Gao, Xueliang Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/456d7cc932dd4a348efc563edad40b5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Toward Robust Non-Intrusive Load Monitoring via Probability Model Framed Ensemble Method
por: Yu Liu, et al.
Publicado: (2021) -
Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
por: Zhengrui Peng, et al.
Publicado: (2021) -
An Enhanced Ensemble Approach for Non-Intrusive Energy Use Monitoring Based on Multidimensional Heterogeneity
por: Yu Liu, et al.
Publicado: (2021) -
Characterisation of Temporal Patterns in Step Count Behaviour from Smartphone App Data: An Unsupervised Machine Learning Approach
por: Francesca Pontin, et al.
Publicado: (2021) -
Dual Water Choices: The Assessment of the Influential Factors on Water Sources Choices Using Unsupervised Machine Learning Market Basket Analysis
por: Tiyasha Tiyasha, et al.
Publicado: (2021)