Temporal feature adaptive non-intrusive load monitoring via unsupervised probability density evolution
Toward the smart power and energy consumption, non-intrusive load monitoring is emerging as the promising technical assistance of intelligent energy user. The load behaviors of individual power users are distinct, that is potential to enhance the monitoring performance if effectively addressed. In t...
Enregistré dans:
Auteurs principaux: | Yu Liu, Tiancheng E. Song, Xiaolong Sun, Shan Gao, Xueliang Huang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/456d7cc932dd4a348efc563edad40b5c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Toward Robust Non-Intrusive Load Monitoring via Probability Model Framed Ensemble Method
par: Yu Liu, et autres
Publié: (2021) -
Automatic Unsupervised Fabric Defect Detection Based on Self-Feature Comparison
par: Zhengrui Peng, et autres
Publié: (2021) -
An Enhanced Ensemble Approach for Non-Intrusive Energy Use Monitoring Based on Multidimensional Heterogeneity
par: Yu Liu, et autres
Publié: (2021) -
Characterisation of Temporal Patterns in Step Count Behaviour from Smartphone App Data: An Unsupervised Machine Learning Approach
par: Francesca Pontin, et autres
Publié: (2021) -
Dual Water Choices: The Assessment of the Influential Factors on Water Sources Choices Using Unsupervised Machine Learning Market Basket Analysis
par: Tiyasha Tiyasha, et autres
Publié: (2021)