A lightweight model for multi-traffic object detection based on deep learning under complex traffic conditions
Object detection is extremely important in autonomous driving environment awareness. Besides vehicle and pedestrian detection, traffic signs and lights are important objects. The paper presents how to achieve precise results in multi-traffic object detection while minimizing the model size. A deep l...
Guardado en:
Autores principales: | Guoqiang Chen, Yanan Cheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Tamkang University Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/457599980d104da9a852c81d3e6f55d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
por: Minghua Zhang, et al.
Publicado: (2021) -
Salient Object Detection Using Recurrent Guidance Network With Hierarchical Attention Features
por: Shanmei Lu, et al.
Publicado: (2020) -
A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
por: Bingxin Hou, et al.
Publicado: (2021) -
Wavelet Frequency Separation Attention Network for Chest X-ray Image Super-Resolution
por: Yue Yu, et al.
Publicado: (2021) -
A Traffic Congestion Prediction Model Based on Dilated-Dense Network
por: SHI Min, et al.
Publicado: (2021)