A lightweight model for multi-traffic object detection based on deep learning under complex traffic conditions
Object detection is extremely important in autonomous driving environment awareness. Besides vehicle and pedestrian detection, traffic signs and lights are important objects. The paper presents how to achieve precise results in multi-traffic object detection while minimizing the model size. A deep l...
Enregistré dans:
Auteurs principaux: | Guoqiang Chen, Yanan Cheng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Tamkang University Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/457599980d104da9a852c81d3e6f55d5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
par: Minghua Zhang, et autres
Publié: (2021) -
Salient Object Detection Using Recurrent Guidance Network With Hierarchical Attention Features
par: Shanmei Lu, et autres
Publié: (2020) -
A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
par: Bingxin Hou, et autres
Publié: (2021) -
Wavelet Frequency Separation Attention Network for Chest X-ray Image Super-Resolution
par: Yue Yu, et autres
Publié: (2021) -
A Traffic Congestion Prediction Model Based on Dilated-Dense Network
par: SHI Min, et autres
Publié: (2021)