Critical assessment of coiled-coil predictions based on protein structure data
Abstract Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/457f24aabd3c4d23a4754297cf759afa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:457f24aabd3c4d23a4754297cf759afa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:457f24aabd3c4d23a4754297cf759afa2021-12-02T16:04:36ZCritical assessment of coiled-coil predictions based on protein structure data10.1038/s41598-021-91886-w2045-2322https://doaj.org/article/457f24aabd3c4d23a4754297cf759afa2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91886-whttps://doaj.org/toc/2045-2322Abstract Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold difference in minimum and maximum number of coiled coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable performance metric for imbalanced data sets, suggests that the tested tools’ performance is close to random. This implicates that the tools’ predictions have only limited informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of in-silico functional genome annotation. Our results indicate that these predictions should be treated very cautiously and need to be supported and validated by experimental evidence.Dominic SimmKlas HatjeStephan WaackMartin KollmarNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-18 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dominic Simm Klas Hatje Stephan Waack Martin Kollmar Critical assessment of coiled-coil predictions based on protein structure data |
description |
Abstract Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold difference in minimum and maximum number of coiled coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable performance metric for imbalanced data sets, suggests that the tested tools’ performance is close to random. This implicates that the tools’ predictions have only limited informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of in-silico functional genome annotation. Our results indicate that these predictions should be treated very cautiously and need to be supported and validated by experimental evidence. |
format |
article |
author |
Dominic Simm Klas Hatje Stephan Waack Martin Kollmar |
author_facet |
Dominic Simm Klas Hatje Stephan Waack Martin Kollmar |
author_sort |
Dominic Simm |
title |
Critical assessment of coiled-coil predictions based on protein structure data |
title_short |
Critical assessment of coiled-coil predictions based on protein structure data |
title_full |
Critical assessment of coiled-coil predictions based on protein structure data |
title_fullStr |
Critical assessment of coiled-coil predictions based on protein structure data |
title_full_unstemmed |
Critical assessment of coiled-coil predictions based on protein structure data |
title_sort |
critical assessment of coiled-coil predictions based on protein structure data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/457f24aabd3c4d23a4754297cf759afa |
work_keys_str_mv |
AT dominicsimm criticalassessmentofcoiledcoilpredictionsbasedonproteinstructuredata AT klashatje criticalassessmentofcoiledcoilpredictionsbasedonproteinstructuredata AT stephanwaack criticalassessmentofcoiledcoilpredictionsbasedonproteinstructuredata AT martinkollmar criticalassessmentofcoiledcoilpredictionsbasedonproteinstructuredata |
_version_ |
1718385202955288576 |