Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird.
Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use dela...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/459717934aa6405081ee00a5a6d5a3a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:459717934aa6405081ee00a5a6d5a3a3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:459717934aa6405081ee00a5a6d5a3a32021-11-25T06:23:36ZMethylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird.1932-620310.1371/journal.pone.0252227https://doaj.org/article/459717934aa6405081ee00a5a6d5a3a32021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252227https://doaj.org/toc/1932-6203Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.Andrea L LieblJeff S WesnerAndrew F RussellAaron W SchreyPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252227 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Andrea L Liebl Jeff S Wesner Andrew F Russell Aaron W Schrey Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. |
description |
Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes. |
format |
article |
author |
Andrea L Liebl Jeff S Wesner Andrew F Russell Aaron W Schrey |
author_facet |
Andrea L Liebl Jeff S Wesner Andrew F Russell Aaron W Schrey |
author_sort |
Andrea L Liebl |
title |
Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. |
title_short |
Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. |
title_full |
Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. |
title_fullStr |
Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. |
title_full_unstemmed |
Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. |
title_sort |
methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/459717934aa6405081ee00a5a6d5a3a3 |
work_keys_str_mv |
AT andrealliebl methylationpatternsatfledgingpredictdelayeddispersalinacooperativelybreedingbird AT jeffswesner methylationpatternsatfledgingpredictdelayeddispersalinacooperativelybreedingbird AT andrewfrussell methylationpatternsatfledgingpredictdelayeddispersalinacooperativelybreedingbird AT aaronwschrey methylationpatternsatfledgingpredictdelayeddispersalinacooperativelybreedingbird |
_version_ |
1718413798635732992 |