Quantum-chemical insights from deep tensor neural networks

Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R. Müller, Alexandre Tkatchenko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/459cc75532c24b7085302dabbc24454d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in the training data.