Quantum-chemical insights from deep tensor neural networks

Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R. Müller, Alexandre Tkatchenko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/459cc75532c24b7085302dabbc24454d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:459cc75532c24b7085302dabbc24454d
record_format dspace
spelling oai:doaj.org-article:459cc75532c24b7085302dabbc24454d2021-12-02T14:41:11ZQuantum-chemical insights from deep tensor neural networks10.1038/ncomms138902041-1723https://doaj.org/article/459cc75532c24b7085302dabbc24454d2017-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms13890https://doaj.org/toc/2041-1723Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in the training data.Kristof T. SchüttFarhad ArbabzadahStefan ChmielaKlaus R. MüllerAlexandre TkatchenkoNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
Klaus R. Müller
Alexandre Tkatchenko
Quantum-chemical insights from deep tensor neural networks
description Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in the training data.
format article
author Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
Klaus R. Müller
Alexandre Tkatchenko
author_facet Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
Klaus R. Müller
Alexandre Tkatchenko
author_sort Kristof T. Schütt
title Quantum-chemical insights from deep tensor neural networks
title_short Quantum-chemical insights from deep tensor neural networks
title_full Quantum-chemical insights from deep tensor neural networks
title_fullStr Quantum-chemical insights from deep tensor neural networks
title_full_unstemmed Quantum-chemical insights from deep tensor neural networks
title_sort quantum-chemical insights from deep tensor neural networks
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/459cc75532c24b7085302dabbc24454d
work_keys_str_mv AT kristoftschutt quantumchemicalinsightsfromdeeptensorneuralnetworks
AT farhadarbabzadah quantumchemicalinsightsfromdeeptensorneuralnetworks
AT stefanchmiela quantumchemicalinsightsfromdeeptensorneuralnetworks
AT klausrmuller quantumchemicalinsightsfromdeeptensorneuralnetworks
AT alexandretkatchenko quantumchemicalinsightsfromdeeptensorneuralnetworks
_version_ 1718389986167881728