Quantum-chemical insights from deep tensor neural networks
Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/459cc75532c24b7085302dabbc24454d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:459cc75532c24b7085302dabbc24454d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:459cc75532c24b7085302dabbc24454d2021-12-02T14:41:11ZQuantum-chemical insights from deep tensor neural networks10.1038/ncomms138902041-1723https://doaj.org/article/459cc75532c24b7085302dabbc24454d2017-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms13890https://doaj.org/toc/2041-1723Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in the training data.Kristof T. SchüttFarhad ArbabzadahStefan ChmielaKlaus R. MüllerAlexandre TkatchenkoNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Kristof T. Schütt Farhad Arbabzadah Stefan Chmiela Klaus R. Müller Alexandre Tkatchenko Quantum-chemical insights from deep tensor neural networks |
description |
Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in the training data. |
format |
article |
author |
Kristof T. Schütt Farhad Arbabzadah Stefan Chmiela Klaus R. Müller Alexandre Tkatchenko |
author_facet |
Kristof T. Schütt Farhad Arbabzadah Stefan Chmiela Klaus R. Müller Alexandre Tkatchenko |
author_sort |
Kristof T. Schütt |
title |
Quantum-chemical insights from deep tensor neural networks |
title_short |
Quantum-chemical insights from deep tensor neural networks |
title_full |
Quantum-chemical insights from deep tensor neural networks |
title_fullStr |
Quantum-chemical insights from deep tensor neural networks |
title_full_unstemmed |
Quantum-chemical insights from deep tensor neural networks |
title_sort |
quantum-chemical insights from deep tensor neural networks |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/459cc75532c24b7085302dabbc24454d |
work_keys_str_mv |
AT kristoftschutt quantumchemicalinsightsfromdeeptensorneuralnetworks AT farhadarbabzadah quantumchemicalinsightsfromdeeptensorneuralnetworks AT stefanchmiela quantumchemicalinsightsfromdeeptensorneuralnetworks AT klausrmuller quantumchemicalinsightsfromdeeptensorneuralnetworks AT alexandretkatchenko quantumchemicalinsightsfromdeeptensorneuralnetworks |
_version_ |
1718389986167881728 |